We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function $f(x)$ with condition number $\kappa$ subject to $x$ being an $s$-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT which also finds a solution of sparsity $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value $f(x^*)$ or the optimal sparsity level $s$. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an $\ell_2$ regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.
We consider solving nonlinear optimization problems with a stochastic objective and deterministic equality constraints. We assume for the objective that its evaluation, gradient, and Hessian are inaccessible, while one can compute their stochastic estimates by, for example, subsampling. We propose a stochastic algorithm based on sequential quadratic programming (SQP) that uses a differentiable exact augmented Lagrangian as the merit function. To motivate our algorithm design, we first revisit and simplify an old SQP method \citep{Lucidi1990Recursive} developed for solving deterministic problems, which serves as the skeleton of our stochastic algorithm. Based on the simplified deterministic algorithm, we then propose a non-adaptive SQP for dealing with stochastic objective, where the gradient and Hessian are replaced by stochastic estimates but the stepsizes are deterministic and prespecified. Finally, we incorporate a recent stochastic line search procedure \citep{Paquette2020Stochastic} into the non-adaptive stochastic SQP to adaptively select the random stepsizes, which leads to an adaptive stochastic SQP. The global "almost sure" convergence for both non-adaptive and adaptive SQP methods is established. Numerical experiments on nonlinear problems in CUTEst test set demonstrate the superiority of the adaptive algorithm.
While adversarial training and its variants have shown to be the most effective algorithms to defend against adversarial attacks, their extremely slow training process makes it hard to scale to large datasets like ImageNet. The key idea of recent works to accelerate adversarial training is to substitute multi-step attacks (e.g., PGD) with single-step attacks (e.g., FGSM). However, these single-step methods suffer from catastrophic overfitting, where the accuracy against PGD attack suddenly drops to nearly 0% during training, destroying the robustness of the networks. In this work, we study the phenomenon from the perspective of training instances. We show that catastrophic overfitting is instance-dependent and fitting instances with larger gradient norm is more likely to cause catastrophic overfitting. Based on our findings, we propose a simple but effective method, Adversarial Training with Adaptive Step size (ATAS). ATAS learns an instancewise adaptive step size that is inversely proportional to its gradient norm. The theoretical analysis shows that ATAS converges faster than the commonly adopted non-adaptive counterparts. Empirically, ATAS consistently mitigates catastrophic overfitting and achieves higher robust accuracy on CIFAR10, CIFAR100 and ImageNet when evaluated on various adversarial budgets.
Due to the importance of the lower bounding distances and the attractiveness of symbolic representations, the family of symbolic aggregate approximations (SAX) has been used extensively for encoding time series data. However, typical SAX-based methods rely on two restrictive assumptions; the Gaussian distribution and equiprobable symbols. This paper proposes two novel data-driven SAX-based symbolic representations, distinguished by their discretization steps. The first representation, oriented for general data compaction and indexing scenarios, is based on the combination of kernel density estimation and Lloyd-Max quantization to minimize the information loss and mean squared error in the discretization step. The second method, oriented for high-level mining tasks, employs the Mean-Shift clustering method and is shown to enhance anomaly detection in the lower-dimensional space. Besides, we verify on a theoretical basis a previously observed phenomenon of the intrinsic process that results in a lower than the expected variance of the intermediate piecewise aggregate approximation. This phenomenon causes an additional information loss but can be avoided with a simple modification. The proposed representations possess all the attractive properties of the conventional SAX method. Furthermore, experimental evaluation on real-world datasets demonstrates their superiority compared to the traditional SAX and an alternative data-driven SAX variant.
Sorted l1 regularization has been incorporated into many methods for solving high-dimensional statistical estimation problems, including the SLOPE estimator in linear regression. In this paper, we study how this relatively new regularization technique improves variable selection by characterizing the optimal SLOPE trade-off between the false discovery proportion (FDP) and true positive proportion (TPP) or, equivalently, between measures of type I error and power. Assuming a regime of linear sparsity and working under Gaussian random designs, we obtain an upper bound on the optimal trade-off for SLOPE, showing its capability of breaking the Donoho-Tanner power limit. To put it into perspective, this limit is the highest possible power that the Lasso, which is perhaps the most popular l1-based method, can achieve even with arbitrarily strong effect sizes. Next, we derive a tight lower bound that delineates the fundamental limit of sorted l1 regularization in optimally trading the FDP off for the TPP. Finally, we show that on any problem instance, SLOPE with a certain regularization sequence outperforms the Lasso, in the sense of having a smaller FDP, larger TPP and smaller l2 estimation risk simultaneously. Our proofs are based on a novel technique that reduces a calculus of variations problem to a class of infinite-dimensional convex optimization problems and a very recent result from approximate message passing theory.
Given a family of squares in the plane, their $packing \ problem$ asks for the maximum number, $\nu$, of pairwise disjoint squares among them, while their $hitting \ problem$ asks for the minimum number, $\tau$, of points hitting all of them, $\tau \ge \nu$. Both problems are NP-hard even if all the rectangles are unit squares and their sides are parallel to the axes. The main results of this work are providing the first bounds for the $\tau / \nu$ ratio on not necessarily axis-parallel squares. We establish an upper bound of $6$ for unit squares and $10$ for squares of varying sizes. The worst ratios we can provide with examples are $3$ and $4$, respectively. For comparison, in the axis-parallel case, the supremum of the considered ratio is in the interval $[\frac{3}{2},2]$ for unit squares and $[\frac{3}{2},4]$ for arbitrary squares. The new bounds necessitate a mixture of novel and classical techniques of possibly extendable use. Furthermore, we study rectangles with a bounded ``aspect ratio'', where the $aspect \ ratio$ of a rectangle is the larger side of a rectangle divided by its smaller side. We improve on the well-known best $\tau/\nu$ bound, which is quadratic in terms of the aspect ratio. We reduce it from quadratic to linear for rectangles, even if they are not axis-parallel, and from linear to logarithmic, for axis-parallel rectangles. Finally, we prove similar bounds for the chromatic numbers of squares and rectangles with a bounded aspect ratio.
We propose the homotopic policy mirror descent (HPMD) method for solving discounted, infinite horizon MDPs with finite state and action space, and study its convergence properties. We report several findings that seem to be new in the literature of policy gradient methods: (1) HPMD exhibits global linear convergence of the value optimality gap, and local superlinear convergence of both the policy and optimality gap with order $\gamma^{-2}$. The superlinear convergence takes effect after no more than $\mathcal{O}(\log(1/\Delta^*))$ number of iterations, where $\Delta^*$ is defined via a gap quantity associated with the optimal state-action value function; (2) HPMD also exhibits last-iterate convergence of the policy, with the limiting policy corresponding exactly to the optimal policy with the maximal entropy for every state. No regularization is added to the optimization objective and hence the second observation arises solely as an algorithmic property of the homotopic policy gradient method; (3) The last-iterate convergence of HPMD holds for a much broader class of decomposable distance-generating functions, including the $p$-th power of $\ell_p$-norm and the negative Tsallis entropy. As a byproduct of the analysis, we also discover the finite-time exact convergence of HPMD with these divergences, and show that HPMD continues converging to the limiting policy even if the current policy is already optimal; (4) For the stochastic HPMD method, we further demonstrate that a better than $\tilde{\mathcal{O}}(|\mathcal{S}| |\mathcal{A}| / \epsilon^2)$ sample complexity for small optimality gap $\epsilon$ holds with high probability, when assuming a generative model for policy evaluation.
In this paper we propose a solution strategy for the Cahn-Larch\'e equations, which is a model for linearized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the resulting discrete system is equivalent to a convex minimization problem, and propose and prove the convergence of alternating minimization applied to it. Finally, we present numerical experiments that show the robustness and effectiveness of both alternating minimization and the monolithic Newton method applied to the newly proposed discrete system of equations. We compare it to a system of equations that has been discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations of the elasticity contributions and show that the newly proposed discrete system is better conditioned for linearization techniques.
We consider the problem of controlling an unknown linear dynamical system under adversarially changing convex costs and full feedback of both the state and cost function. We present the first computationally-efficient algorithm that attains an optimal $\smash{\sqrt{T}}$-regret rate compared to the best stabilizing linear controller in hindsight, while avoiding stringent assumptions on the costs such as strong convexity. Our approach is based on a careful design of non-convex lower confidence bounds for the online costs, and uses a novel technique for computationally-efficient regret minimization of these bounds that leverages their particular non-convex structure.
A striking observation about iterative magnitude pruning (IMP; Frankle et al. 2020) is that $\unicode{x2014}$ after just a few hundred steps of dense training $\unicode{x2014}$ the method can find a sparse sub-network that can be trained to the same accuracy as the dense network. However, the same does not hold at step 0, i.e. random initialization. In this work, we seek to understand how this early phase of pre-training leads to a good initialization for IMP both through the lens of the data distribution and the loss landscape geometry. Empirically we observe that, holding the number of pre-training iterations constant, training on a small fraction of (randomly chosen) data suffices to obtain an equally good initialization for IMP. We additionally observe that by pre-training only on "easy" training data, we can decrease the number of steps necessary to find a good initialization for IMP compared to training on the full dataset or a randomly chosen subset. Finally, we identify novel properties of the loss landscape of dense networks that are predictive of IMP performance, showing in particular that more examples being linearly mode connected in the dense network correlates well with good initializations for IMP. Combined, these results provide new insight into the role played by the early phase training in IMP.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.