We consider the problem of controlling an unknown linear dynamical system under adversarially changing convex costs and full feedback of both the state and cost function. We present the first computationally-efficient algorithm that attains an optimal $\smash{\sqrt{T}}$-regret rate compared to the best stabilizing linear controller in hindsight, while avoiding stringent assumptions on the costs such as strong convexity. Our approach is based on a careful design of non-convex lower confidence bounds for the online costs, and uses a novel technique for computationally-efficient regret minimization of these bounds that leverages their particular non-convex structure.
We consider the design of sublinear space and query complexity algorithms for estimating the cost of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a metric on $n$ points. We first consider the $o(n)$-space regime and show that, when the input is a stream of all $\binom{n}{2}$ entries of the metric, for any $\alpha \ge 2$, both MST and TSP cost can be $\alpha$-approximated using $\tilde{O}(n/\alpha)$ space, and that $\Omega(n/\alpha^2)$ space is necessary for this task. Moreover, we show that even if the streaming algorithm is allowed $p$ passes over a metric stream, it still requires $\tilde{\Omega}(\sqrt{n/\alpha p^2})$ space. We next consider the semi-streaming regime, where computing even the exact MST cost is easy and the main challenge is to estimate TSP cost to within a factor that is strictly better than $2$. We show that, if the input is a stream of all edges of the weighted graph that induces the underlying metric, for any $\varepsilon > 0$, any one-pass $(2-\varepsilon)$-approximation of TSP cost requires $\Omega(\varepsilon^2 n^2)$ space; on the other hand, there is an $\tilde{O}(n)$ space two-pass algorithm that approximates the TSP cost to within a factor of 1.96. Finally, we consider the query complexity of estimating metric TSP cost to within a factor that is strictly better than $2$, when the algorithm is given access to a matrix that specifies pairwise distances between all points. For MST estimation in this model, it is known that a $(1+\varepsilon)$-approximation is achievable with $\tilde{O}(n/\varepsilon^{O(1)})$ queries. We design an algorithm that performs $\tilde{O}(n^{1.5})$ distance queries and achieves a strictly better than $2$-approximation when either the metric is known to contain a spanning tree supported on weight-$1$ edges or the algorithm is given access to a minimum spanning tree of the graph.
In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.
Since the celebrated works of Russo and Zou (2016,2019) and Xu and Raginsky (2017), it has been well known that the generalization error of supervised learning algorithms can be bounded in terms of the mutual information between their input and the output, given that the loss of any fixed hypothesis has a subgaussian tail. In this work, we generalize this result beyond the standard choice of Shannon's mutual information to measure the dependence between the input and the output. Our main result shows that it is indeed possible to replace the mutual information by any strongly convex function of the joint input-output distribution, with the subgaussianity condition on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the dependence measure. This allows us to derive a range of generalization bounds that are either entirely new or strengthen previously known ones. Examples include bounds stated in terms of $p$-norm divergences and the Wasserstein-2 distance, which are respectively applicable for heavy-tailed loss distributions and highly smooth loss functions. Our analysis is entirely based on elementary tools from convex analysis by tracking the growth of a potential function associated with the dependence measure and the loss function.
Resource-constrained classification tasks are common in real-world applications such as allocating tests for disease diagnosis, hiring decisions when filling a limited number of positions, and defect detection in manufacturing settings under a limited inspection budget. Typical classification algorithms treat the learning process and the resource constraints as two separate and sequential tasks. Here we design an adaptive learning approach that considers resource constraints and learning jointly by iteratively fine-tuning misclassification costs. Via a structured experimental study using a publicly available data set, we evaluate a decision tree classifier that utilizes the proposed approach. The adaptive learning approach performs significantly better than alternative approaches, especially for difficult classification problems in which the performance of common approaches may be unsatisfactory. We envision the adaptive learning approach as an important addition to the repertoire of techniques for handling resource-constrained classification problems.
This paper proposes two convergent adaptive mesh-refining algorithms for the hybrid high-order method in convex minimization problems with two-sided p-growth. Examples include the p-Laplacian, an optimal design problem in topology optimization, and the convexified double-well problem. The hybrid high-order method utilizes a gradient reconstruction in the space of piecewise Raviart-Thomas finite element functions without stabilization on triangulations into simplices or in the space of piecewise polynomials with stabilization on polytopal meshes. The main results imply the convergence of the energy and, under further convexity properties, of the approximations of the primal resp. dual variable. Numerical experiments illustrate an efficient approximation of singular minimizers and improved convergence rates for higher polynomial degrees. Computer simulations provide striking numerical evidence that an adopted adaptive HHO algorithm can overcome the Lavrentiev gap phenomenon even with empirical higher convergence rates.
We consider the problem of online allocation (matching, budgeted allocations, and assortments) of reusable resources where an adversarial sequence of resource requests is revealed over time and allocated resources are used/rented for a stochastic duration, drawn independently from known resource usage distributions. This problem is a fundamental generalization of well studied models in online matching and resource allocation. We give an algorithm that obtains the best possible competitive ratio of $(1-1/e)$ for general usage distributions and large resource capacities. At the heart of our algorithm is a new quantity that factors in the potential of reusability for each resource by (computationally) creating an asymmetry between identical units of the resource. In order to control the stochastic dependencies induced by reusability, we introduce a relaxed online algorithm that is only subject to fluid approximations of the stochastic elements in the problem. The output of this relaxed algorithm guides the overall algorithm. Finally, we establish competitive ratio guarantees by constructing a feasible solution to an LP free system of constraints. More generally, these ideas lead to a principled approach for integrating stochastic and combinatorial elements (such as reusability, customer choice, and budgeted allocations) in online resource allocation problems.
In this paper, we study the problem of speeding up a type of optimization algorithms called Frank-Wolfe, a conditional gradient method. We develop and employ two novel inner product search data structures, improving the prior fastest algorithm in [Shrivastava, Song and Xu, NeurIPS 2021]. * The first data structure uses low-dimensional random projection to reduce the problem to a lower dimension, then uses efficient inner product data structure. It has preprocessing time $\tilde O(nd^{\omega-1}+dn^{1+o(1)})$ and per iteration cost $\tilde O(d+n^\rho)$ for small constant $\rho$. * The second data structure leverages the recent development in adaptive inner product search data structure that can output estimations to all inner products. It has preprocessing time $\tilde O(nd)$ and per iteration cost $\tilde O(d+n)$. The first algorithm improves the state-of-the-art (with preprocessing time $\tilde O(d^2n^{1+o(1)})$ and per iteration cost $\tilde O(dn^\rho)$) in all cases, while the second one provides an even faster preprocessing time and is suitable when the number of iterations is small.
We propose a new framework for differentially private optimization of convex functions which are Lipschitz in an arbitrary norm $\normx{\cdot}$. Our algorithms are based on a regularized exponential mechanism which samples from the density $\propto \exp(-k(F+\mu r))$ where $F$ is the empirical loss and $r$ is a regularizer which is strongly convex with respect to $\normx{\cdot}$, generalizing a recent work of \cite{GLL22} to non-Euclidean settings. We show that this mechanism satisfies Gaussian differential privacy and solves both DP-ERM (empirical risk minimization) and DP-SCO (stochastic convex optimization), by using localization tools from convex geometry. Our framework is the first to apply to private convex optimization in general normed spaces, and directly recovers non-private SCO rates achieved by mirror descent, as the privacy parameter $\eps \to \infty$. As applications, for Lipschitz optimization in $\ell_p$ norms for all $p \in (1, 2)$, we obtain the first optimal privacy-utility tradeoffs; for $p = 1$, we improve tradeoffs obtained by the recent works \cite{AsiFKT21, BassilyGN21} by at least a logarithmic factor. Our $\ell_p$ norm and Schatten-$p$ norm optimization frameworks are complemented with polynomial-time samplers whose query complexity we explicitly bound.
This work characterizes the effect of depth on the optimization landscape of linear regression, showing that, despite their nonconvexity, deeper models have more desirable optimization landscape. We consider a robust and over-parameterized setting, where a subset of measurements are grossly corrupted with noise and the true linear model is captured via an $N$-layer linear neural network. On the negative side, we show that this problem \textit{does not} have a benign landscape: given any $N\geq 1$, with constant probability, there exists a solution corresponding to the ground truth that is neither local nor global minimum. However, on the positive side, we prove that, for any $N$-layer model with $N\geq 2$, a simple sub-gradient method becomes oblivious to such ``problematic'' solutions; instead, it converges to a balanced solution that is not only close to the ground truth but also enjoys a flat local landscape, thereby eschewing the need for "early stopping". Lastly, we empirically verify that the desirable optimization landscape of deeper models extends to other robust learning tasks, including deep matrix recovery and deep ReLU networks with $\ell_1$-loss.
We consider the approximation of some optimal control problems for the Navier-Stokes equation via a Dynamic Programming approach. These control problems arise in many industrial applications and are very challenging from the numerical point of view since the semi-discretization of the dynamics corresponds to an evolutive system of ordinary differential equations in very high dimension. The typical approach is based on the Pontryagin maximum principle and leads to a two point boundary value problem. Here we present a different approach based on the value function and the solution of a Bellman, a challenging problem in high dimension. We mitigate the curse of dimensionality via a recent multilinear approximation of the dynamics coupled with a dynamic programming scheme on a tree structure. We discuss several aspects related to the implementation of this new approach and we present some numerical examples to illustrate the results on classical control problems studied in the literature.