亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Source-Free Domain Adaptation (SFDA) aims to adapt a source model for a target domain, with only access to unlabeled target training data and the source model pre-trained on a supervised source domain. Relying on pseudo labeling and/or auxiliary supervision, conventional methods are inevitably error-prone. To mitigate this limitation, in this work we for the first time explore the potentials of off-the-shelf vision-language (ViL) multimodal models (e.g.,CLIP) with rich whilst heterogeneous knowledge. We find that directly applying the ViL model to the target domain in a zero-shot fashion is unsatisfactory, as it is not specialized for this particular task but largely generic. To make it task specific, we propose a novel Distilling multimodal Foundation model(DIFO)approach. Specifically, DIFO alternates between two steps during adaptation: (i) Customizing the ViL model by maximizing the mutual information with the target model in a prompt learning manner, (ii) Distilling the knowledge of this customized ViL model to the target model. For more fine-grained and reliable distillation, we further introduce two effective regularization terms, namely most-likely category encouragement and predictive consistency. Extensive experiments show that DIFO significantly outperforms the state-of-the-art alternatives. Code is here

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 圖像檢索 · 合一 · SimPLe · Performance ·
2024 年 4 月 24 日

Composed image retrieval (CIR) aims to retrieve the target image based on a multimodal query, i.e., a reference image paired with corresponding modification text. Recent CIR studies leverage vision-language pre-trained (VLP) methods as the feature extraction backbone, and perform nonlinear feature-level multimodal query fusion to retrieve the target image. Despite the promising performance, we argue that their nonlinear feature-level multimodal fusion may lead to the fused feature deviating from the original embedding space, potentially hurting the retrieval performance. To address this issue, in this work, we propose shifting the multimodal fusion from the feature level to the raw-data level to fully exploit the VLP model's multimodal encoding and cross-modal alignment abilities. In particular, we introduce a Dual Query Unification-based Composed Image Retrieval framework (DQU-CIR), whose backbone simply involves a VLP model's image encoder and a text encoder. Specifically, DQU-CIR first employs two training-free query unification components: text-oriented query unification and vision-oriented query unification, to derive a unified textual and visual query based on the raw data of the multimodal query, respectively. The unified textual query is derived by concatenating the modification text with the extracted reference image's textual description, while the unified visual query is created by writing the key modification words onto the reference image. Ultimately, to address diverse search intentions, DQU-CIR linearly combines the features of the two unified queries encoded by the VLP model to retrieve the target image. Extensive experiments on four real-world datasets validate the effectiveness of our proposed method.

Universal Multi-source Domain Adaptation (UniMDA) transfers knowledge from multiple labeled source domains to an unlabeled target domain under domain shifts (different data distribution) and class shifts (unknown target classes). Existing solutions focus on excavating image features to detect unknown samples, ignoring abundant information contained in textual semantics. In this paper, we propose an Adaptive Prompt learning with Negative textual semantics and uncErtainty modeling method based on Contrastive Language-Image Pre-training (APNE-CLIP) for UniMDA classification tasks. Concretely, we utilize the CLIP with adaptive prompts to leverage textual information of class semantics and domain representations, helping the model identify unknown samples and address domain shifts. Additionally, we design a novel global instance-level alignment objective by utilizing negative textual semantics to achieve more precise image-text pair alignment. Furthermore, we propose an energy-based uncertainty modeling strategy to enlarge the margin distance between known and unknown samples. Extensive experiments demonstrate the superiority of our proposed method.

In Pliable Private Information Retrieval (PPIR) with a single server, messages are partitioned into $\Gamma$ non-overlapping classes. The user wants to retrieve a message from its desired class without revealing the identity of the desired class to the server. In S. A. Obead, H. Y. Lin and E. Rosnes, Single-Server Pliable Private Information Retrieval With Side Information, arXiv:2305.06857, authors consider the problem of PPIR with Side Information (PPIR-SI), where the user now has side information. The user wants to retrieve any new message (not included in the side information) from its desired class without revealing the identity of the desired class and its side information. A scheme for the PPIR-SI is given by Obead et al. for the case when the users side information is unidentified, and this case is referred to as PPIR with Unidentifiable SI (PPIR-USI). In this paper, we study the problem of PPIR for the single server case when the side information is partially identifiable, and we term this case as PPIR with Identifiable Side Information (PPIR-ISI). The user is well aware of the identity of the side information belonging to $\eta$ number of classes, where $1\leq \eta \leq \Gamma$. In this problem, The user wants to retrieve a message from its desired class without revealing the identity of the desired class to the server. We give a scheme for PPIR-ISI, and we prove that having identifiable side information is advantageous by comparing the rate of the proposed scheme to the rate of the PPIR-USI scheme given by Obead et al. for some cases. Further, we extend the problem of PPIR-ISI for multi-user case, where users can collaborately generate the query sets, and we give a scheme for this problem.

Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-to-image diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks.

Vision-Large-Language-models(VLMs) have great application prospects in autonomous driving. Despite the ability of VLMs to comprehend and make decisions in complex scenarios, their integration into safety-critical autonomous driving systems poses serious security risks. In this paper, we propose BadVLMDriver, the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects. Unlike existing backdoor attacks against VLMs that rely on digital modifications, BadVLMDriver uses common physical items, such as a red balloon, to induce unsafe actions like sudden acceleration, highlighting a significant real-world threat to autonomous vehicle safety. To execute BadVLMDriver, we develop an automated pipeline utilizing natural language instructions to generate backdoor training samples with embedded malicious behaviors. This approach allows for flexible trigger and behavior selection, enhancing the stealth and practicality of the attack in diverse scenarios. We conduct extensive experiments to evaluate BadVLMDriver for two representative VLMs, five different trigger objects, and two types of malicious backdoor behaviors. BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon. Thus, BadVLMDriver not only demonstrates a critical security risk but also emphasizes the urgent need for developing robust defense mechanisms to protect against such vulnerabilities in autonomous driving technologies.

Unsupervised domain adaptation (UDA) aims to estimate a transferable model for unlabeled target domains by exploiting labeled source data. Optimal Transport (OT) based methods have recently been proven to be a promising solution for UDA with a solid theoretical foundation and competitive performance. However, most of these methods solely focus on domain-level OT alignment by leveraging the geometry of domains for domain-invariant features based on the global embeddings of images. However, global representations of images may destroy image structure, leading to the loss of local details that offer category-discriminative information. This study proposes an end-to-end Deep Hierarchical Optimal Transport method (DeepHOT), which aims to learn both domain-invariant and category-discriminative representations by mining hierarchical structural relations among domains. The main idea is to incorporate a domain-level OT and image-level OT into a unified OT framework, hierarchical optimal transport, to model the underlying geometry in both domain space and image space. In DeepHOT framework, an image-level OT serves as the ground distance metric for the domain-level OT, leading to the hierarchical structural distance. Compared with the ground distance of the conventional domain-level OT, the image-level OT captures structural associations among local regions of images that are beneficial to classification. In this way, DeepHOT, a unified OT framework, not only aligns domains by domain-level OT, but also enhances the discriminative power through image-level OT. Moreover, to overcome the limitation of high computational complexity, we propose a robust and efficient implementation of DeepHOT by approximating origin OT with sliced Wasserstein distance in image-level OT and accomplishing the mini-batch unbalanced domain-level OT.

Graph Neural Networks (GNNs) offer a compact and computationally efficient way to learn embeddings and classifications on graph data. GNN models are frequently large, making distributed minibatch training necessary. The primary contribution of this paper is new methods for reducing communication in the sampling step for distributed GNN training. Here, we propose a matrix-based bulk sampling approach that expresses sampling as a sparse matrix multiplication (SpGEMM) and samples multiple minibatches at once. When the input graph topology does not fit on a single device, our method distributes the graph and use communication-avoiding SpGEMM algorithms to scale GNN minibatch sampling, enabling GNN training on much larger graphs than those that can fit into a single device memory. When the input graph topology (but not the embeddings) fits in the memory of one GPU, our approach (1) performs sampling without communication, (2) amortizes the overheads of sampling a minibatch, and (3) can represent multiple sampling algorithms by simply using different matrix constructions. In addition to new methods for sampling, we introduce a pipeline that uses our matrix-based bulk sampling approach to provide end-to-end training results. We provide experimental results on the largest Open Graph Benchmark (OGB) datasets on $128$ GPUs, and show that our pipeline is $2.5\times$ faster than Quiver (a distributed extension to PyTorch-Geometric) on a $3$-layer GraphSAGE network. On datasets outside of OGB, we show a $8.46\times$ speedup on $128$ GPUs in per-epoch time. Finally, we show scaling when the graph is distributed across GPUs and scaling for both node-wise and layer-wise sampling algorithms.

Language models that can learn a task at inference time, called in-context learning (ICL), show increasing promise in natural language inference tasks. In ICL, a model user constructs a prompt to describe a task with a natural language instruction and zero or more examples, called demonstrations. The prompt is then input to the language model to generate a completion. In this paper, we apply ICL to the design and evaluation of satisfaction arguments, which describe how a requirement is satisfied by a system specification and associated domain knowledge. The approach builds on three prompt design patterns, including augmented generation, prompt tuning, and chain-of-thought prompting, and is evaluated on a privacy problem to check whether a mobile app scenario and associated design description satisfies eight consent requirements from the EU General Data Protection Regulation (GDPR). The overall results show that GPT-4 can be used to verify requirements satisfaction with 96.7% accuracy and dissatisfaction with 93.2% accuracy. Inverting the requirement improves verification of dissatisfaction to 97.2%. Chain-of-thought prompting improves overall GPT-3.5 performance by 9.0% accuracy. We discuss the trade-offs among templates, models and prompt strategies and provide a detailed analysis of the generated specifications to inform how the approach can be applied in practice.

Today, most methods for image understanding tasks rely on feed-forward neural networks. While this approach has allowed for empirical accuracy, efficiency, and task adaptation via fine-tuning, it also comes with fundamental disadvantages. Existing networks often struggle to generalize across different datasets, even on the same task. By design, these networks ultimately reason about high-dimensional scene features, which are challenging to analyze. This is true especially when attempting to predict 3D information based on 2D images. We propose to recast 3D multi-object tracking from RGB cameras as an \emph{Inverse Rendering (IR)} problem, by optimizing via a differentiable rendering pipeline over the latent space of pre-trained 3D object representations and retrieve the latents that best represent object instances in a given input image. To this end, we optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties. We investigate not only an alternate take on tracking but our method also enables examining the generated objects, reasoning about failure situations, and resolving ambiguous cases. We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data and assessing camera-based 3D tracking on the nuScenes and Waymo datasets. Both these datasets are completely unseen to our method and do not require fine-tuning. Videos and code are available at //light.princeton.edu/inverse-rendering-tracking/.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司