亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In past work on fairness in machine learning, the focus has been on forcing the prediction of classifiers to have similar statistical properties for people of different demographics. To reduce the violation of these properties, fairness methods usually simply rescale the classifier scores, ignoring similarities and dissimilarities between members of different groups. Yet, we hypothesize that such information is relevant in quantifying the unfairness of a given classifier. To validate this hypothesis, we introduce Optimal Transport to Fairness (OTF), a method that quantifies the violation of fairness constraints as the smallest Optimal Transport cost between a probabilistic classifier and any score function that satisfies these constraints. For a flexible class of linear fairness constraints, we construct a practical way to compute OTF as a differentiable fairness regularizer that can be added to any standard classification setting. Experiments show that OTF can be used to achieve an improved trade-off between predictive power and fairness.

相關內容

As AI-based decision systems proliferate, their successful operationalization requires balancing multiple desiderata: predictive performance, disparity across groups, safeguarding sensitive group attributes (e.g., race), and engineering cost. We present a holistic framework for evaluating and contextualizing fairness interventions with respect to the above desiderata. The two key points of practical consideration are where (pre-, in-, post-processing) and how (in what way the sensitive group data is used) the intervention is introduced. We demonstrate our framework using a thorough benchmarking study on predictive parity; we study close to 400 methodological variations across two major model types (XGBoost vs. Neural Net) and ten datasets. Methodological insights derived from our empirical study inform the practical design of ML workflow with fairness as a central concern. We find predictive parity is difficult to achieve without using group data, and despite requiring group data during model training (but not inference), distributionally robust methods provide significant Pareto improvement. Moreover, a plain XGBoost model often Pareto-dominates neural networks with fairness interventions, highlighting the importance of model inductive bias.

In recent years, by leveraging more data, computation, and diverse tasks, learned optimizers have achieved remarkable success in supervised learning optimization, outperforming classical hand-designed optimizers. However, in practice, these learned optimizers fail to generalize to reinforcement learning tasks due to unstable and complex loss landscapes. Moreover, neither hand-designed optimizers nor learned optimizers have been specifically designed to address the unique optimization properties in reinforcement learning. In this work, we take a data-driven approach to learn to optimize for reinforcement learning using meta-learning. We introduce a novel optimizer structure that significantly improves the training efficiency of learned optimizers, making it possible to learn an optimizer for reinforcement learning from scratch. Although trained in toy tasks, our learned optimizer demonstrates its generalization ability to unseen complex tasks. Finally, we design a set of small gridworlds to train the first general-purpose optimizer for reinforcement learning.

A lot of studies on the summary measures of predictive strength of categorical response models consider the likelihood ratio index (LRI), also known as the McFadden-$R^2$, a better option than many other measures. We propose a simple modification of the LRI that adjusts for the effect of the number of response categories on the measure and that also rescales its values, mimicking an underlying latent measure. The modified measure is applicable to both binary and ordinal response models fitted by maximum likelihood. Results from simulation studies and a real data example on the olfactory perception of boar taint show that the proposed measure outperforms most of the widely used goodness-of-fit measures for binary and ordinal models. The proposed $R^2$ interestingly proves quite invariant to an increasing number of response categories of an ordinal model.

Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.

The increasing use of machine learning in high-stakes domains -- where people's livelihoods are impacted -- creates an urgent need for interpretable, fair, and highly accurate algorithms. With these needs in mind, we propose a mixed integer optimization (MIO) framework for learning optimal classification trees -- one of the most interpretable models -- that can be augmented with arbitrary fairness constraints. In order to better quantify the "price of interpretability", we also propose a new measure of model interpretability called decision complexity that allows for comparisons across different classes of machine learning models. We benchmark our method against state-of-the-art approaches for fair classification on popular datasets; in doing so, we conduct one of the first comprehensive analyses of the trade-offs between interpretability, fairness, and predictive accuracy. Given a fixed disparity threshold, our method has a price of interpretability of about 4.2 percentage points in terms of out-of-sample accuracy compared to the best performing, complex models. However, our method consistently finds decisions with almost full parity, while other methods rarely do.

Cross-Domain Recommendation (CDR) is an effective way to alleviate the cold-start problem. However, previous work severely ignores fairness and bias when learning the mapping function, which is used to obtain the representations for fresh users in the target domain. To study this problem, in this paper, we propose a Fairness-aware Cross-Domain Recommendation model, called FairCDR. Our method achieves user-oriented group fairness by learning the fairness-aware mapping function. Since the overlapping data are quite limited and distributionally biased, FairCDR leverages abundant non-overlapping users and interactions to help alleviate these problems. Considering that each individual has different influence on model fairness, we propose a new reweighing method based on Influence Function (IF) to reduce unfairness while maintaining recommendation accuracy. Extensive experiments are conducted to demonstrate the effectiveness of our model.

Screening classifiers are increasingly used to identify qualified candidates in a variety of selection processes. In this context, it has been recently shown that, if a classifier is calibrated, one can identify the smallest set of candidates which contains, in expectation, a desired number of qualified candidates using a threshold decision rule. This lends support to focusing on calibration as the only requirement for screening classifiers. In this paper, we argue that screening policies that use calibrated classifiers may suffer from an understudied type of within-group discrimination -- they may discriminate against qualified members within demographic groups of interest. Further, we argue that this type of discrimination can be avoided if classifiers satisfy within-group monotonicity, a natural monotonicity property within each of the groups. Then, we introduce an efficient post-processing algorithm based on dynamic programming to minimally modify a given calibrated classifier so that its probability estimates satisfy within-group monotonicity. We validate our algorithm using US Census survey data and show that within-group monotonicity can be often achieved at a small cost in terms of prediction granularity and shortlist size.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.

北京阿比特科技有限公司