Machine learning has been successfully applied to various fields of scientific computing in recent years. In this work, we propose a sparse radial basis function neural network method to solve elliptic partial differential equations (PDEs) with multiscale coefficients. Inspired by the deep mixed residual method, we rewrite the second-order problem into a first-order system and employ multiple radial basis function neural networks (RBFNNs) to approximate unknown functions in the system. To aviod the overfitting due to the simplicity of RBFNN, an additional regularization is introduced in the loss function. Thus the loss function contains two parts: the $L_2$ loss for the residual of the first-order system and boundary conditions, and the $\ell_1$ regularization term for the weights of radial basis functions (RBFs). An algorithm for optimizing the specific loss function is introduced to accelerate the training process. The accuracy and effectiveness of the proposed method are demonstrated through a collection of multiscale problems with scale separation, discontinuity and multiple scales from one to three dimensions. Notably, the $\ell_1$ regularization can achieve the goal of representing the solution by fewer RBFs. As a consequence, the total number of RBFs scales like $\mathcal{O}(\varepsilon^{-n\tau})$, where $\varepsilon$ is the smallest scale, $n$ is the dimensionality, and $\tau$ is typically smaller than $1$. It is worth mentioning that the proposed method not only has the numerical convergence and thus provides a reliable numerical solution in three dimensions when a classical method is typically not affordable, but also outperforms most other available machine learning methods in terms of accuracy and robustness.
Detecting out of policy speech (OOPS) content is important but difficult. While machine learning is a powerful tool to tackle this challenging task, it is hard to break the performance ceiling due to factors like quantity and quality limitations on training data and inconsistencies in OOPS definition and data labeling. To realize the full potential of available limited resources, we propose a meta learning technique (MLT) that combines individual models built with different text representations. We analytically show that the resulting technique is numerically stable and produces reasonable combining weights. We combine the MLT with a threshold-moving (TM) technique to further improve the performance of the combined predictor on highly-imbalanced in-distribution and out-of-distribution datasets. We also provide computational results to show the statistically significant advantages of the proposed MLT approach. All authors contributed equally to this work.
Reinforcement learning (RL) has helped improve decision-making in several applications. However, applying traditional RL is challenging in some applications, such as rehabilitation of people with a spinal cord injury (SCI). Among other factors, using RL in this domain is difficult because there are many possible treatments (i.e., large action space) and few patients (i.e., limited training data). Treatments for SCIs have natural groupings, so we propose two approaches to grouping treatments so that an RL agent can learn effectively from limited data. One relies on domain knowledge of SCI rehabilitation and the other learns similarities among treatments using an embedding technique. We then use Fitted Q Iteration to train an agent that learns optimal treatments. Through a simulation study designed to reflect the properties of SCI rehabilitation, we find that both methods can help improve the treatment decisions of physiotherapists, but the approach based on domain knowledge offers better performance. Our findings provide a "proof of concept" that RL can be used to help improve the treatment of those with an SCI and indicates that continued efforts to gather data and apply RL to this domain are worthwhile.
Sparse Bayesian learning (SBL) has been extensively utilized in data-driven modeling to combat the issue of overfitting. While SBL excels in linear-in-parameter models, its direct applicability is limited in models where observations possess nonlinear relationships with unknown parameters. Recently, a semi-analytical Bayesian framework known as nonlinear sparse Bayesian learning (NSBL) was introduced by the authors to induce sparsity among model parameters during the Bayesian inversion of nonlinear-in-parameter models. NSBL relies on optimally selecting the hyperparameters of sparsity-inducing Gaussian priors. It is inherently an approximate method since the uncertainty in the hyperparameter posterior is disregarded as we instead seek the maximum a posteriori (MAP) estimate of the hyperparameters (type-II MAP estimate). This paper aims to investigate the hierarchical structure that forms the basis of NSBL and validate its accuracy through a comparison with a one-level hierarchical Bayesian inference as a benchmark in the context of three numerical experiments: (i) a benchmark linear regression example with Gaussian prior and Gaussian likelihood, (ii) the same regression problem with a highly non-Gaussian prior, and (iii) an example of a dynamical system with a non-Gaussian prior and a highly non-Gaussian likelihood function, to explore the performance of the algorithm in these new settings. Through these numerical examples, it can be shown that NSBL is well-suited for physics-based models as it can be readily applied to models with non-Gaussian prior distributions and non-Gaussian likelihood functions. Moreover, we illustrate the accuracy of the NSBL algorithm as an approximation to the one-level hierarchical Bayesian inference and its ability to reduce the computational cost while adequately exploring the parameter posteriors.
In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.
This paper is to consider a general low-rank signal plus noise model in high dimensional settings. Specifically, we consider the noise with a general covariance structure and the signal to be at the same magnitude as the noise. Our study focuses on exploring various asymptotic properties related to the spiked eigenvalues and eigenvectors. As applications, we propose a new criterion to estimate the number of clusters, and investigate the properties of spectral clustering.
Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow to directly adjust the degree of randomness to be admitted in the computation. Our numerical findings indicate that this additional randomness can lead to significant gains in learning performance in certain generative modeling tasks. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.
Spiking neural network is a kind of neuromorphic computing that is believed to improve the level of intelligence and provide advantages for quantum computing. In this work, we address this issue by designing an optical spiking neural network and find that it can be used to accelerate the speed of computation, especially on combinatorial optimization problems. Here the spiking neural network is constructed by the antisymmetrically coupled degenerate optical parametric oscillator pulses and dissipative pulses. A nonlinear transfer function is chosen to mitigate amplitude inhomogeneities and destabilize the resulting local minima according to the dynamical behavior of spiking neurons. It is numerically shown that the spiking neural network-coherent Ising machines have excellent performance on combinatorial optimization problems, which is expected to offer new applications for neural computing and optical computing.
Models of complex technological systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behavior of complex engineering models. The simple binning approach computes first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than Sobol' indices. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behavior of complex systems containing interactions and dependencies.
For augmentation of the square-shaped image data of a convolutional neural network (CNN), we introduce a new method, in which the original images are mapped onto a disk with a conformal mapping, rotated around the center of this disk and mapped under such a M\"obius transformation that preserves the disk, and then mapped back onto their original square shape. This process does not result the loss of information caused by removing areas from near the edges of the original images unlike the typical transformations used in the data augmentation for a CNN. We offer here the formulas of all the mappings needed together with detailed instructions how to write a code for transforming the images. The new method is also tested with simulated data and, according the results, using this method to augment the training data of 10 images into 40 images decreases the amount of the error in the predictions by a CNN for a test set of 160 images in a statistically significant way (p-value=0.0360).
Since its introduction in 2019, the whole end-to-end neural diarization (EEND) line of work has been addressing speaker diarization as a frame-wise multi-label classification problem with permutation-invariant training. Despite EEND showing great promise, a few recent works took a step back and studied the possible combination of (local) supervised EEND diarization with (global) unsupervised clustering. Yet, these hybrid contributions did not question the original multi-label formulation. We propose to switch from multi-label (where any two speakers can be active at the same time) to powerset multi-class classification (where dedicated classes are assigned to pairs of overlapping speakers). Through extensive experiments on 9 different benchmarks, we show that this formulation leads to significantly better performance (mostly on overlapping speech) and robustness to domain mismatch, while eliminating the detection threshold hyperparameter, critical for the multi-label formulation.