亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we analyse the parameterised complexity of propositional inclusion (PINC) and independence logic (PIND). The problems of interest are model checking (MC) and satisfiability (SAT). The complexity of these problems is well understood in the classical (non-parameterised) setting. Mahmood and Meier (FoIKS 2020) recently studied the parameterised complexity of propositional dependence logic (PDL). As a continuation of their work, we classify inclusion and independence logic and thereby come closer to completing the picture with respect to the parametrised complexity for the three most studied logics in the propositional team semantics setting. We present results for each problem with respect to 8 different parameterisations. It turns out that for a team-based logic L such that L-atoms can be evaluated in polynomial time, then MC parameterised by teamsize is FPT. As a corollary, we get an FPT membership under the following parameterisations: formula-size, formula-depth, treewidth, and number of variables. The parameter teamsize shows interesting behavior for SAT. For PINC, the parameter teamsize is not meaningful, whereas for PDL and PIND the satisfiability is paraNP-complete. Finally, we prove that when parameterised by arity, both MC and SAT are paraNP-complete for each of the considered logics.

相關內容

A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing (and deciding in the finite case) those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures. We also prove semi-decidability of the type inhabitation problem for cut-free MELL proof-structures.

In this paper we develop efficient first-order algorithms for the generalized trust-region subproblem (GTRS), which has applications in signal processing, compressed sensing, and engineering. Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective value exactness holds for its SDP relaxation under a Slater condition. While polynomial-time SDP-based algorithms exist for the GTRS, their relatively large computational complexity has motivated and spurred the development of custom approaches for solving the GTRS. In particular, recent work in this direction has developed first-order methods for the GTRS whose running times are linear in the sparsity (the number of nonzero entries) of the input data. In contrast to these algorithms, in this paper we develop algorithms for computing $\epsilon$-approximate solutions to the GTRS whose running times are linear in both the input sparsity and the precision $\log(1/\epsilon)$ whenever a regularity parameter is positive. We complement our theoretical guarantees with numerical experiments comparing our approach against algorithms from the literature. Our numerical experiments highlight that our new algorithms significantly outperform prior state-of-the-art algorithms on sparse large-scale instances.

Uncertainty in physical parameters can make the solution of forward or inverse light scattering problems in astrophysical, biological, and atmospheric sensing applications, cost prohibitive for real-time applications. For example, given a probability density in the parametric space of dimensions, refractive index and wavelength, the number of required evaluations for the expected scattering increases dramatically. In the case of dielectric and weakly absorbing spherical particles (both homogeneous and layered), we begin with a Fraunhofer approximation of the scattering coefficients consisting of Riccati-Bessel functions, and reduce it into simpler nested trigonometric approximations. They provide further computational advantages when parameterized on lines of constant optical path lengths. This can reduce the cost of evaluations by large factors $\approx$ 50, without a loss of accuracy in the integrals of these scattering coefficients. We analyze the errors of the proposed approximation, and present numerical results for a set of forward problems as a demonstration.

The generalized Biot-Brinkman equations describe the displacement, pressures and fluxes in an elastic medium permeated by multiple viscous fluid networks and can be used to study complex poromechanical interactions in geophysics, biophysics and other engineering sciences. These equations extend on the Biot and multiple-network poroelasticity equations on the one hand and Brinkman flow models on the other hand, and as such embody a range of singular perturbation problems in realistic parameter regimes. In this paper, we introduce, theoretically analyze and numerically investigate a class of three-field finite element formulations of the generalized Biot-Brinkman equations. By introducing appropriate norms, we demonstrate that the proposed finite element discretization, as well as an associated preconditioning strategy, is robust with respect to the relevant parameter regimes. The theoretical analysis is complemented by numerical examples.

The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.

The AGM postulates by Alchourr\'on, G\"ardenfors, and Makinson continue to represent a cornerstone in research related to belief change. Katsuno and Mendelzon (K&M) adopted the AGM postulates for changing belief bases and characterized AGM belief base revision in propositional logic over finite signatures. We generalize K&M's approach to the setting of (multiple) base revision in arbitrary Tarskian logics, covering all logics with a classical model-theoretic semantics and hence a wide variety of logics used in knowledge representation and beyond. Our generic formulation applies to various notions of "base" (such as belief sets, arbitrary or finite sets of sentences, or single sentences). The core result is a representation theorem showing a two-way correspondence between AGM base revision operators and certain "assignments": functions mapping belief bases to total - yet not transitive - "preference" relations between interpretations. Alongside, we present a companion result for the case when the AGM postulate of syntax-independence is abandoned. We also provide a characterization of all logics for which our result can be strengthened to assignments producing transitive preference relations (as in K&M's original work), giving rise to two more representation theorems for such logics, according to syntax dependence vs. independence.

Solving the time-dependent Schr\"odinger equation is an important application area for quantum algorithms. We consider Schr\"odinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter $\hbar$, in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schr\"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of $\hbar$ and the precision $\varepsilon$ are obtained. It is found that the number of required qubits, $m$, scales only logarithmically with respect to $\hbar$. When the solution has bounded derivatives up to order $\ell$, the symmetric Trotting method has gate complexity $\mathcal{O}\Big({ (\varepsilon \hbar)^{-\frac12} \mathrm{polylog}(\varepsilon^{-\frac{3}{2\ell}} \hbar^{-1-\frac{1}{2\ell}})}\Big),$ provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with $\mathrm{poly}(m)$ operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of $\hbar$. The gate complexity in this case is reduced to $\mathcal{O}\Big({\varepsilon^{-\frac12} \mathrm{polylog}( \varepsilon^{-\frac3{2\ell}} \hbar^{-1} )}\Big),$ with $\ell$ again indicating the smoothness of the solution.

The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly more prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models correspondingly requires more detailed clinical data. This raises questions about how much data should be collected and when, in order to minimize the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using a gradient-based score function to determine the optimal data collection times for model calibration. The novel score function introduced in this work eliminates the need for a weight parameter used in a previous study's score function, while still yielding accurate and efficient model calibration using even fewer scans on a sample set of synthetic data, simulating tumors of varying levels of radiosensitivity. We also conduct a robust analysis of the calibration accuracy and certainty, using both error and uncertainty metrics. Unlike the error analysis of the previous study, the inclusion of uncertainty analysis in this work|as a means for deciding when the algorithm can be terminated|provides a more realistic option for clinical decision-making, since it does not rely on data that will be collected later in time.

In communication complexity the Arthur-Merlin (AM) model is the most natural one that allows both randomness and non-determinism. Presently we do not have any super-logarithmic lower bound for the AM-complexity of an explicit function. Obtaining such a bound is a fundamental challenge to our understanding of communication phenomena. In this article we explore the gap between the known techniques and the complexity class AM. In the first part we define a new natural class, Small-advantage Layered Arthur-Merlin (SLAM), that has the following properties: - SLAM is (strictly) included in AM and includes all previously known subclasses of AM with non-trivial lower bounds. - SLAM is qualitatively stronger than the union of those classes. - SLAM is a subject to the discrepancy bound: in particular, the inner product function does not have an efficient SLAM-protocol. Structurally this can be summarised as SBP $\cup$ UAM $\subset$ SLAM $\subseteq$ AM $\cap$ PP. In the second part we ask why proving a lower bound of $\omega(\sqrt n)$ on the MA-complexity of an explicit function seems to be difficult. Both of these results are related to the notion of layer complexity, which is, informally, the number of "layers of non-determinism" used by a protocol.

In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.

北京阿比特科技有限公司