Semi-linear elliptic Partial Differential Equations (PDEs) such as the non-linear Poisson Boltzmann Equation (nPBE) is highly relevant for non-linear electrostatics in computational biology and chemistry. It is of particular importance for modeling potential fields from molecules in solvents or plasmas with stochastic fluctuations. The extensive applications include ones in condensed matter and solid state physics, chemical physics, electrochemistry, biochemistry, thermodynamics, statistical mechanics, and materials science, among others. In this paper we study the complex analytic properties of semi-linear elliptic Partial Differential Equations with respect to random fluctuations on the domain. We first prove the existence and uniqueness of the nPBE on a bounded domain in $\mathbb{R}^3$. This proof relies on the application of a contraction mapping reasoning, as the standard convex optimization argument for the deterministic nPBE no longer applies. Using the existence and uniqueness result we subsequently show that solution to the nPBE admits an analytic extension onto a well defined region in the complex hyperplane with respect to the number of stochastic variables. Due to the analytic extension, stochastic collocation theory for sparse grids predict algebraic to sub-exponential convergence rates with respect to the number of knots. A series of numerical experiments with sparse grids is consistent with this prediction and the analyticity result. Finally, this approach readily extends to a wide class of semi-linear elliptic PDEs.
Despite making significant progress in multi-modal tasks, current Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucination, which may lead to harmful consequences. Therefore, evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment. Previous works are limited in high evaluation costs (e.g., relying on humans or advanced LLMs) and insufficient evaluation dimensions (e.g., types of hallucination and task). In this paper, we propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task including object existence, object attribute and object relation hallucination. Based on AMBER, we design a low-cost and efficient evaluation pipeline. Additionally, we conduct a comprehensive evaluation and detailed analysis of mainstream MLLMs including GPT-4V(ision), and also give guideline suggestions for mitigating hallucinations. The data and code of AMBER are available at //github.com/junyangwang0410/AMBER.
Entity resolution (ER) is the process of identifying records that refer to the same entities within one or across multiple databases. Numerous techniques have been developed to tackle ER challenges over the years, with recent emphasis placed on machine and deep learning methods for the matching phase. However, the quality of the benchmark datasets typically used in the experimental evaluations of learning-based matching algorithms has not been examined in the literature. To cover this gap, we propose four different approaches to assessing the difficulty and appropriateness of 13 established datasets: two theoretical approaches, which involve new measures of linearity and existing measures of complexity, and two practical approaches: the difference between the best non-linear and linear matchers, as well as the difference between the best learning-based matcher and the perfect oracle. Our analysis demonstrates that most of the popular datasets pose rather easy classification tasks. As a result, they are not suitable for properly evaluating learning-based matching algorithms. To address this issue, we propose a new methodology for yielding benchmark datasets. We put it into practice by creating four new matching tasks, and we verify that these new benchmarks are more challenging and therefore more suitable for further advancements in the field.
Federated Continual Learning (FCL) has emerged as a promising paradigm that combines Federated Learning (FL) and Continual Learning (CL). To achieve good model accuracy, FCL needs to tackle catastrophic forgetting due to concept drift over time in CL, and to overcome the potential interference among clients in FL. We propose Concept Matching (CM), a clustering-based framework for FCL to address these challenges. The CM framework groups the client models into concept model clusters, and then builds different global models to capture different concepts in FL over time. In each round, the server sends the global concept models to the clients. To avoid catastrophic forgetting, each client selects the concept model best-matching the concept of the current data for further fine-tuning. To avoid interference among client models with different concepts, the server clusters the models representing the same concept, aggregates the model weights in each cluster, and updates the global concept model with the cluster model of the same concept. Since the server does not know the concepts captured by the aggregated cluster models, we propose a novel server concept matching algorithm that effectively updates a global concept model with a matching cluster model. The CM framework provides flexibility to use different clustering, aggregation, and concept matching algorithms. The evaluation demonstrates that CM outperforms state-of-the-art systems and scales well with the number of clients and the model size.
We unify Ryser's and Glynn's formulas for computing the permanent into a single framework. We then show via an orbital bound argument that the product rank of the permanent is asymptotically upper bounded by $ \frac{\exp\left(\pi\sqrt{\frac{2n}{3}}\right)}{4\sqrt{3}n} $.
We propose a way to split a given bivariate P-recursive sequence into a summable part and a non-summable part in such a way that the non-summable part is minimal in some sense. This decomposition gives rise to a new reduction-based creative telescoping algorithm based on the concept of integral bases.
The Holy Book of Quran is believed to be the literal word of God (Allah) as revealed to the Prophet Muhammad (PBUH) over a period of approximately 23 years. It is the book where God provides guidance on how to live a righteous and just life, emphasizing principles like honesty, compassion, charity and justice, as well as providing rules for personal conduct, family matters, business ethics and much more. However, due to constraints related to the language and the Quran organization, it is challenging for Muslims to get all relevant ayahs (verses) pertaining to a matter or inquiry of interest. Hence, we developed a Quran semantic search tool which finds the verses pertaining to the user inquiry or prompt. To achieve this, we trained several models on a large dataset of over 30 tafsirs, where typically each tafsir corresponds to one verse in the Quran and, using cosine similarity, obtained the tafsir tensor which is most similar to the prompt tensor of interest, which was then used to index for the corresponding ayah in the Quran. Using the SNxLM model, we were able to achieve a cosine similarity score as high as 0.97 which corresponds to the abdu tafsir for a verse relating to financial matters.
Homoscedastic regression error is a common assumption in many high-dimensional regression models and theories. Although heteroscedastic error commonly exists in real-world datasets, testing heteroscedasticity remains largely underexplored under high-dimensional settings. We consider the heteroscedasticity test proposed in Newey and Powell (1987), whose asymptotic theory has been well-established for the low-dimensional setting. We show that the Newey-Powell test can be developed for high-dimensional data. For asymptotic theory, we consider the setting where the number of dimensions grows with the sample size at a linear rate. The asymptotic analysis for the test statistic utilizes the Approximate Message Passing (AMP) algorithm, from which we obtain the limiting distribution of the test. The numerical performance of the test is investigated through an extensive simulation study. As real-data applications, we present the analysis based on "international economic growth" data (Belloni et al. 2011), which is found to be homoscedastic, and "supermarket" data (Lan et al., 2016), which is found to be heteroscedastic.
*《Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs》A Jolicoeur-Martineau, I Mitliagkas [Mila] (2019)
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.