亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Holy Book of Quran is believed to be the literal word of God (Allah) as revealed to the Prophet Muhammad (PBUH) over a period of approximately 23 years. It is the book where God provides guidance on how to live a righteous and just life, emphasizing principles like honesty, compassion, charity and justice, as well as providing rules for personal conduct, family matters, business ethics and much more. However, due to constraints related to the language and the Quran organization, it is challenging for Muslims to get all relevant ayahs (verses) pertaining to a matter or inquiry of interest. Hence, we developed a Quran semantic search tool which finds the verses pertaining to the user inquiry or prompt. To achieve this, we trained several models on a large dataset of over 30 tafsirs, where typically each tafsir corresponds to one verse in the Quran and, using cosine similarity, obtained the tafsir tensor which is most similar to the prompt tensor of interest, which was then used to index for the corresponding ayah in the Quran. Using the SNxLM model, we were able to achieve a cosine similarity score as high as 0.97 which corresponds to the abdu tafsir for a verse relating to financial matters.

相關內容

Vision-Language Models (VLMs) are expected to be capable of reasoning with commonsense knowledge as human beings. One example is that humans can reason where and when an image is taken based on their knowledge. This makes us wonder if, based on visual cues, Vision-Language Models that are pre-trained with large-scale image-text resources can achieve and even outperform human's capability in reasoning times and location. To address this question, we propose a two-stage \recognition\space and \reasoning\space probing task, applied to discriminative and generative VLMs to uncover whether VLMs can recognize times and location-relevant features and further reason about it. To facilitate the investigation, we introduce WikiTiLo, a well-curated image dataset compromising images with rich socio-cultural cues. In the extensive experimental studies, we find that although VLMs can effectively retain relevant features in visual encoders, they still fail to make perfect reasoning. We will release our dataset and codes to facilitate future studies.

The burgeoning interest in Multimodal Large Language Models (MLLMs), such as OpenAI's GPT-4V(ision), has significantly impacted both academic and industrial realms. These models enhance Large Language Models (LLMs) with advanced visual understanding capabilities, facilitating their application in a variety of multimodal tasks. Recently, Google introduced Gemini, a cutting-edge MLLM designed specifically for multimodal integration. Despite its advancements, preliminary benchmarks indicate that Gemini lags behind GPT models in commonsense reasoning tasks. However, this assessment, based on a limited dataset (i.e., HellaSWAG), does not fully capture Gemini's authentic commonsense reasoning potential. To address this gap, our study undertakes a thorough evaluation of Gemini's performance in complex reasoning tasks that necessitate the integration of commonsense knowledge across modalities. We carry out a comprehensive analysis of 12 commonsense reasoning datasets, ranging from general to domain-specific tasks. This includes 11 datasets focused solely on language, as well as one that incorporates multimodal elements. Our experiments across four LLMs and two MLLMs demonstrate Gemini's competitive commonsense reasoning capabilities. Additionally, we identify common challenges faced by current LLMs and MLLMs in addressing commonsense problems, underscoring the need for further advancements in enhancing the commonsense reasoning abilities of these models.

Figure drawing is often used as part of dementia screening protocols. The Survey of Health Aging and Retirement in Europe (SHARE) has adopted three drawing tests from Addenbrooke's Cognitive Examination III as part of its questionnaire module on cognition. While the drawings are usually scored by trained clinicians, SHARE uses the face-to-face interviewers who conduct the interviews to score the drawings during fieldwork. This may pose a risk to data quality, as interviewers may be less consistent in their scoring and more likely to make errors due to their lack of clinical training. This paper therefore reports a first proof of concept and evaluates the feasibility of automating scoring using deep learning. We train several different convolutional neural network (CNN) models using about 2,000 drawings from the 8th wave of the SHARE panel in Germany and the corresponding interviewer scores, as well as self-developed 'gold standard' scores. The results suggest that this approach is indeed feasible. Compared to training on interviewer scores, models trained on the gold standard data improve prediction accuracy by about 10 percentage points. The best performing model, ConvNeXt Base, achieves an accuracy of about 85%, which is 5 percentage points higher than the accuracy of the interviewers. While this is a promising result, the models still struggle to score partially correct drawings, which are also problematic for interviewers. This suggests that more and better training data is needed to achieve production-level prediction accuracy. We therefore discuss possible next steps to improve the quality and quantity of training examples.

Neural Radiance Fields (NeRF) have recently emerged as a powerful method for image-based 3D reconstruction, but the lengthy per-scene optimization limits their practical usage, especially in resource-constrained settings. Existing approaches solve this issue by reducing the number of input views and regularizing the learned volumetric representation with either complex losses or additional inputs from other modalities. In this paper, we present KeyNeRF, a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays. Such rays are first selected at camera level by a view selection algorithm that promotes baseline diversity while guaranteeing scene coverage, then at pixel level by sampling from a probability distribution based on local image entropy. Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRF codebases.

The Multipurpose Interferometer Array Pathfinder (MIA), developed from the Argentine Institute of Radio Astronomy (IAR), is a radio astronomical instrument based on interferometry techniques, designed for the detection of radio emission from astronomical sources. Phase one consists of 16 antennas of 5 meters in diameter, with the possibility of increasing their number. In addition, it is equipped with a dual polarization receiver with a bandwidth of 250 MHz, centered at 1325 MHz, and a digitizer and processor for the correlation functions. For the development of this instrument, a three antenna pathfinder is currently being built with its positioning control, radio frequency systems, acquisition and processing stages. This paper will describe the concept design and their current progress for each stage.

With the proliferation of dialogic data across the Internet, the Dialogue Commonsense Multi-choice Question Answering (DC-MCQ) task has emerged as a response to the challenge of comprehending user queries and intentions. Although prevailing methodologies exhibit effectiveness in addressing single-choice questions, they encounter difficulties in handling multi-choice queries due to the heightened intricacy and informational density. In this paper, inspired by the human cognitive process of progressively excluding options, we propose a three-step Reverse Exclusion Graph-of-Thought (ReX-GoT) framework, including Option Exclusion, Error Analysis, and Combine Information. Specifically, our ReX-GoT mimics human reasoning by gradually excluding irrelevant options and learning the reasons for option errors to choose the optimal path of the GoT and ultimately infer the correct answer. By progressively integrating intricate clues, our method effectively reduces the difficulty of multi-choice reasoning and provides a novel solution for DC-MCQ. Extensive experiments on the CICERO and CICERO$_{v2}$ datasets validate the significant improvement of our approach on DC-MCQ task. On zero-shot setting, our model outperform the best baseline by 17.67% in terms of F1 score for the multi-choice task. Most strikingly, our GPT3.5-based ReX-GoT framework achieves a remarkable 39.44% increase in F1 score.

Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.

Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

北京阿比特科技有限公司