The Multipurpose Interferometer Array Pathfinder (MIA), developed from the Argentine Institute of Radio Astronomy (IAR), is a radio astronomical instrument based on interferometry techniques, designed for the detection of radio emission from astronomical sources. Phase one consists of 16 antennas of 5 meters in diameter, with the possibility of increasing their number. In addition, it is equipped with a dual polarization receiver with a bandwidth of 250 MHz, centered at 1325 MHz, and a digitizer and processor for the correlation functions. For the development of this instrument, a three antenna pathfinder is currently being built with its positioning control, radio frequency systems, acquisition and processing stages. This paper will describe the concept design and their current progress for each stage.
Detection of Volatile Organic Compounds (VOCs) from the breath is becoming a viable route for the early detection of diseases non-invasively. This paper presents a sensor array with three metal oxide electrodes that can use machine learning methods to identify four distinct VOCs in a mixture. The metal oxide sensor array was subjected to various VOC concentrations, including ethanol, acetone, toluene and chloroform. The dataset obtained from individual gases and their mixtures were analyzed using multiple machine learning algorithms, such as Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree, Linear Regression, Logistic Regression, Naive Bayes, Linear Discriminant Analysis, Artificial Neural Network, and Support Vector Machine. KNN and RF have shown more than 99% accuracy in classifying different varying chemicals in the gas mixtures. In regression analysis, KNN has delivered the best results with R2 value of more than 0.99 and LOD of 0.012, 0.015, 0.014 and 0.025 PPM for predicting the concentrations of varying chemicals Acetone, Toluene, Ethanol, and Chloroform, respectively in complex mixtures. Therefore, it is demonstrated that the array utilizing the provided algorithms can classify and predict the concentrations of the four gases simultaneously for disease diagnosis and treatment monitoring.
We investigate the constant-depth circuit complexity of the Isomorphism Problem, Minimum Generating Set Problem (MGS), and Sub(quasi)group Membership Problem (Membership) for groups and quasigroups (=Latin squares), given as input in terms of their multiplication (Cayley) tables. Despite decades of research on these problems, lower bounds for these problems even against depth-$2$ AC circuits remain unknown. Perhaps surprisingly, Chattopadhyay, Tor\'an, and Wagner (FSTTCS 2010; ACM Trans. Comput. Theory, 2013) showed that Quasigroup Isomorphism could be solved by AC circuits of depth $O(\log \log n)$ using $O(\log^2 n)$ nondeterministic bits, a class we denote $\exists^{\log^2(n)}FOLL$. We narrow this gap by improving the upper bound for many of these problems to $quasiAC^0$, thus decreasing the depth to constant. In particular, we show: - MGS for quasigroups is in $\exists^{\log^2(n)}\forall^{\log n}NTIME(\mathrm{polylog}(n))\subseteq quasiAC^0$. Papadimitriou and Yannakakis (J. Comput. Syst. Sci., 1996) conjectured that this problem was $\exists^{\log^2(n)}P$-complete; our results refute a version of that conjecture for completeness under $quasiAC^0$ reductions unconditionally, and under polylog-space reductions assuming EXP $\neq$ PSPACE. - MGS for groups is in $AC^{1}(L)$, improving on the previous upper bound of $P$ (Lucchini & Thakkar, J. Algebra, 2024). - Quasigroup Isomorphism belongs to $\exists^{\log^2(n)}AC^0(DTISP(\mathrm{polylog},\log)\subseteq quasiAC^0$, improving on the previous bound of $\exists^{\log^2(n)}L\cap\exists^{\log^2(n)}FOLL\subseteq quasiFOLL$ (Chattopadhyay, Tor\'an, & Wagner, ibid.; Levet, Australas. J. Combin., 2023). Our results suggest that understanding the constant-depth circuit complexity may be key to resolving the complexity of problems concerning (quasi)groups in the multiplication table model.
Large Language Models (LLMs) are susceptible to Jailbreaking attacks, which aim to extract harmful information by subtly modifying the attack query. As defense mechanisms evolve, directly obtaining harmful information becomes increasingly challenging for Jailbreaking attacks. In this work, inspired by human practices of indirect context to elicit harmful information, we focus on a new attack form called Contextual Interaction Attack. The idea relies on the autoregressive nature of the generation process in LLMs. We contend that the prior context--the information preceding the attack query--plays a pivotal role in enabling potent Jailbreaking attacks. Specifically, we propose an approach that leverages preliminary question-answer pairs to interact with the LLM. By doing so, we guide the responses of the model toward revealing the 'desired' harmful information. We conduct experiments on four different LLMs and demonstrate the efficacy of this attack, which is black-box and can also transfer across LLMs. We believe this can lead to further developments and understanding of the context vector in LLMs.
Verification of Neural Networks (NNs) that approximate the solution of Partial Differential Equations (PDEs) is a major milestone towards enhancing their trustworthiness and accelerating their deployment, especially for safety-critical systems. If successful, such NNs can become integral parts of simulation software tools which can accelerate the simulation of complex dynamic systems more than 100 times. However, the verification of these functions poses major challenges; it is not straightforward how to efficiently bound them or how to represent the derivative of the NN. This work addresses both these problems. First, we define the NN derivative as a finite difference approximation. Then, we formulate the PDE residual bounding problem alongside the Initial Value Problem's error propagation. Finally, for the first time, we tackle the problem of bounding an NN function without a priori knowledge of the output domain. For this, we build a parallel branching algorithm that combines the incomplete CROWN solver and Gradient Attack for termination and domain rejection conditions. We demonstrate the strengths and weaknesses of the proposed framework, and we suggest further work to enhance its efficiency.
Markov Games (MG) is an important model for Multi-Agent Reinforcement Learning (MARL). It was long believed that the "curse of multi-agents" (i.e., the algorithmic performance drops exponentially with the number of agents) is unavoidable until several recent works (Daskalakis et al., 2023; Cui et al., 2023; Wang et al., 2023. While these works did resolve the curse of multi-agents, when the state spaces are prohibitively large and (linear) function approximations are deployed, they either had a slower convergence rate of $O(T^{-1/4})$ or brought a polynomial dependency on the number of actions $A_{\max}$ -- which is avoidable in single-agent cases even when the loss functions can arbitrarily vary with time (Dai et al., 2023). This paper first refines the `AVLPR` framework by Wang et al. (2023), with an insight of *data-dependent* (i.e., stochastic) pessimistic estimation of the sub-optimality gap, allowing a broader choice of plug-in algorithms. When specialized to MGs with independent linear function approximations, we propose novel *action-dependent bonuses* to cover occasionally extreme estimation errors. With the help of state-of-the-art techniques from the single-agent RL literature, we give the first algorithm that tackles the curse of multi-agents, attains the optimal $O(T^{-1/2})$ convergence rate, and avoids $\text{poly}(A_{\max})$ dependency simultaneously.
From the outset, batteries have been the main power source for the Internet of Things (IoT). However, replacing and disposing of billions of dead batteries per year is costly in terms of maintenance and ecologically irresponsible. Since batteries are one of the greatest threats to a sustainable IoT, battery-less devices are the solution to this problem. These devices run on long-lived capacitors charged using various forms of energy harvesting, which results in intermittent on-off device behaviour. In this work, we model this intermittent battery-less behaviour for LoRaWAN devices. This model allows us to characterize the performance with the aim to determine under which conditions a LoRaWAN device can work without batteries, and how its parameters should be configured. Results show that the reliability directly depends on device configurations (i.e., capacitor size, turn-on voltage threshold), application behaviour (i.e., transmission interval, packet size) and environmental conditions (i.e., energy harvesting rate).
Despite the recent success associated with Large Language Models~(LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of \textit{importance score calculation} and \textit{eviction scope construction}. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a \underline{r}\underline{o}bust \underline{c}ache \underline{o}mission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at \url{//github.com/DRSY/EasyKV}.
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.