亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the recent success associated with Large Language Models~(LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of \textit{importance score calculation} and \textit{eviction scope construction}. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a \underline{r}\underline{o}bust \underline{c}ache \underline{o}mission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at \url{//github.com/DRSY/EasyKV}.

相關內容

In recent years, Deep Learning has gained popularity for its ability to solve complex classification tasks, increasingly delivering better results thanks to the development of more accurate models, the availability of huge volumes of data and the improved computational capabilities of modern computers. However, these improvements in performance also bring efficiency problems, related to the storage of datasets and models, and to the waste of energy and time involved in both the training and inference processes. In this context, data reduction can help reduce energy consumption when training a deep learning model. In this paper, we present up to eight different methods to reduce the size of a tabular training dataset, and we develop a Python package to apply them. We also introduce a representativeness metric based on topology to measure how similar are the reduced datasets and the full training dataset. Additionally, we develop a methodology to apply these data reduction methods to image datasets for object detection tasks. Finally, we experimentally compare how these data reduction methods affect the representativeness of the reduced dataset, the energy consumption and the predictive performance of the model.

Large Language Models (LLMs) have shown remarkable capabilities, but their reasoning abilities and underlying mechanisms remain poorly understood. We present a novel approach to enhance LLMs' reasoning through attention mechanism optimization, without additional training data. We identify inefficiencies in the attention distribution caused by non-semantic tokens and propose an algorithm to re-balance the skewed distribution, enabling the model to abstract more nuanced knowledge. Our experiments demonstrate significantly improved reasoning capabilities, particularly for non-STEM questions. We provide insights into the role of attention patterns in LLMs' reasoning and propose a method to enhance these abilities, paving the way for more powerful and versatile language models.

Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post hoc interpretability method specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and ten NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax. All our NCMs, except for the BERT-like model, statistically learn to predict tokens related to blocks of code (\eg brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful method to detect and facilitate the elimination of confounding bias in NCMs.

Existence constraints were defined in the Relational Data Model, but, unfortunately, are not provided by any Relational Database Management System, except for their NOT NULL particular case. Our (Elementary) Mathematical Data Model extended them to function products and introduced their dual non-existence constraints. MatBase, an intelligent data and knowledge base management system prototype based on both these data models, not only provides existence and non-existence constraints, but also automatically generates code for their enforcement. This paper presents and discusses the algorithms used by MatBase to enforce these types of constraints.

In our research, we pioneer a novel approach to evaluate the effectiveness of jailbreak attacks on Large Language Models (LLMs), such as GPT-4 and LLaMa2, diverging from traditional robustness-focused binary evaluations. Our study introduces two distinct evaluation frameworks: a coarse-grained evaluation and a fine-grained evaluation. Each framework, using a scoring range from 0 to 1, offers a unique perspective, enabling a more comprehensive and nuanced evaluation of attack effectiveness and empowering attackers to refine their attack prompts with greater understanding. Furthermore, we have developed a comprehensive ground truth dataset specifically tailored for jailbreak tasks. This dataset not only serves as a crucial benchmark for our current study but also establishes a foundational resource for future research, enabling consistent and comparative analyses in this evolving field. Upon meticulous comparison with traditional evaluation methods, we discovered that our evaluation aligns with the baseline's trend while offering a more profound and detailed assessment. We believe that by accurately evaluating the effectiveness of attack prompts in the Jailbreak task, our work lays a solid foundation for assessing a wider array of similar or even more complex tasks in the realm of prompt injection, potentially revolutionizing this field.

Data Augmentation (DA) has emerged as an indispensable strategy in Time Series Classification (TSC), primarily due to its capacity to amplify training samples, thereby bolstering model robustness, diversifying datasets, and curtailing overfitting. However, the current landscape of DA in TSC is plagued with fragmented literature reviews, nebulous methodological taxonomies, inadequate evaluative measures, and a dearth of accessible, user-oriented tools. In light of these challenges, this study embarks on an exhaustive dissection of DA methodologies within the TSC realm. Our initial approach involved an extensive literature review spanning a decade, revealing that contemporary surveys scarcely capture the breadth of advancements in DA for TSC, prompting us to meticulously analyze over 100 scholarly articles to distill more than 60 unique DA techniques. This rigorous analysis precipitated the formulation of a novel taxonomy, purpose-built for the intricacies of DA in TSC, categorizing techniques into five principal echelons: Transformation-Based, Pattern-Based, Generative, Decomposition-Based, and Automated Data Augmentation. Our taxonomy promises to serve as a robust navigational aid for scholars, offering clarity and direction in method selection. Addressing the conspicuous absence of holistic evaluations for prevalent DA techniques, we executed an all-encompassing empirical assessment, wherein upwards of 15 DA strategies were subjected to scrutiny across 8 UCR time-series datasets, employing ResNet and a multi-faceted evaluation paradigm encompassing Accuracy, Method Ranking, and Residual Analysis, yielding a benchmark accuracy of 88.94 +- 11.83%. Our investigation underscored the inconsistent efficacies of DA techniques, with...

In their recent work, C. Doerr and Krejca (Transactions on Evolutionary Computation, 2023) proved upper bounds on the expected runtime of the randomized local search heuristic on generalized Needle functions. Based on these upper bounds, they deduce in a not fully rigorous manner a drastic influence of the needle radius $k$ on the runtime. In this short article, we add the missing lower bound necessary to determine the influence of parameter $k$ on the runtime. To this aim, we derive an exact description of the expected runtime, which also significantly improves the upper bound given by C. Doerr and Krejca. We also describe asymptotic estimates of the expected runtime.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司