亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Partitioned communication was introduced in MPI 4.0 as a user-friendly interface to support pipelined communication patterns, particularly common in the context of MPI+threads. It provides the user with the ability to divide a global buffer into smaller independent chunks, called partitions, which can then be communicated independently. In this work we first model the performance gain that can be expected when using partitioned communication. Next, we describe the improvements we made to \mpich{} to enable those gains and provide a high-quality implementation of MPI partitioned communication. We then evaluate partitioned communication in various common use cases and assess the performance in comparison with other MPI point-to-point and one-sided approaches. Specifically, we first investigate two scenarios commonly encountered for small partition sizes in a multithreaded environment: thread contention and overhead of using many partitions. We propose two solutions to alleviate the measured penalty and demonstrate their use. We then focus on large messages and the gain obtained when exploiting the delay resulting from computations or load imbalance. We conclude with our perspectives on the benefits of partitioned communication and the various results obtained.

相關內容

Several task and motion planning algorithms have been proposed recently to design paths for mobile robot teams with collaborative high-level missions specified using formal languages, such as Linear Temporal Logic (LTL). However, the designed paths often lack reactivity to failures of robot capabilities (e.g., sensing, mobility, or manipulation) that can occur due to unanticipated events (e.g., human intervention or system malfunctioning) which in turn may compromise mission performance. To address this novel challenge, in this paper, we propose a new resilient mission planning algorithm for teams of heterogeneous robots with collaborative LTL missions. The robots are heterogeneous with respect to their capabilities while the mission requires applications of these skills at certain areas in the environment in a temporal/logical order. The proposed method designs paths that can adapt to unexpected failures of robot capabilities. This is accomplished by re-allocating sub-tasks to the robots based on their currently functioning skills while minimally disrupting the existing team motion plans. We provide experiments and theoretical guarantees demonstrating the efficiency and resiliency of the proposed algorithm.

Deep neural networks are over-parameterized and easily overfit the datasets they train on. In the extreme case, it has been shown that these networks can memorize a training set with fully randomized labels. We propose using the curvature of loss function around each training sample, averaged over training epochs, as a measure of memorization of the sample. We use this metric to study the generalization versus memorization properties of different samples in popular image datasets and show that it captures memorization statistics well, both qualitatively and quantitatively. We first show that the high curvature samples visually correspond to long-tailed, mislabeled, or conflicting samples, those that are most likely to be memorized. This analysis helps us find, to the best of our knowledge, a novel failure mode on the CIFAR100 and ImageNet datasets: that of duplicated images with differing labels. Quantitatively, we corroborate the validity of our scores via two methods. First, we validate our scores against an independent and comprehensively calculated baseline, by showing high cosine similarity with the memorization scores released by Feldman and Zhang (2020). Second, we inject corrupted samples which are memorized by the network, and show that these are learned with high curvature. To this end, we synthetically mislabel a random subset of the dataset. We overfit a network to it and show that sorting by curvature yields high AUROC values for identifying the corrupted samples. An added advantage of our method is that it is scalable, as it requires training only a single network as opposed to the thousands trained by the baseline, while capturing the aforementioned failure mode that the baseline fails to identify.

While VideoQA Transformer models demonstrate competitive performance on standard benchmarks, the reasons behind their success are not fully understood. Do these models jointly capture and leverage the rich multimodal structures and dynamics from video and text? Or are they merely exploiting shortcuts to achieve high scores? Hence, we design $\textit{QUAG}$ (QUadrant AveraGe), a lightweight and non-parametric probe, to critically analyze multimodal representations. QUAG facilitates combined dataset-model study by systematic ablation of model's coupled multimodal understanding during inference. Surprisingly, it demonstrates that the models manage to maintain high performance even under multimodal impairment. We extend QUAG to design "QUAG-attention", a simplistic and less-expressive replacement of self-attention. We find that the models with QUAG-attention achieve similar performance with significantly less mulops without any finetuning. These findings indicate that the current VideoQA benchmarks and metrics do not penalize models that find shortcuts and discount joint multimodal understanding. Motivated by this, we propose the $\textit{CLAVI}$ (Counterfactual in LAnguage and VIdeo), a diagnostic dataset for coupled multimodal understanding in VideoQA. CLAVI consists of temporal questions and videos that are augmented to curate balanced counterfactuals in language and video domains. We evaluate models on CLAVI and find that all models achieve high performance on multimodal shortcut instances, but most of them have poor performance on the counterfactual instances that necessitate joint multimodal understanding. Overall, with the multimodal representation analysis using QUAG and diagnostic analysis using CLAVI, we show that many VideoQA models are incapable of learning multimodal representations and that their success on standard datasets is an illusion of joint multimodal understanding.

Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge the resilience of distributed DNNs to adversarial action still remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and introduce two new measurements for distortion and robustness. Our theoretical findings indicate that (i) assuming the same level of information distortion, latent features are always more robust than input representations; (ii) the adversarial robustness is jointly determined by the feature dimension and the generalization capability of the DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks to the ImageNet-1K dataset. Our experimental results support our theoretical findings by showing that the compressed latent representations can reduce the success rate of adversarial attacks by 88% in the best case and by 57% on the average compared to attacks to the input space.

Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.

Sharing infrastructure between many users is often advantageous, however finding a fair and reasonable way to allocate its cost between its users can be challenging. This is particularly true for LPWANs, a popular Internet of Things solution for wirelessly connecting devices to the internet. We study cost-allocation of LPWANS using a covering integer program. Standard cost-allocation methods are inapplicable in this model, because the integrality gap of its natural LP-relaxation is unbounded. We overcome this challenge by strengthening the natural LP with knapsack-cover inequalities. Our main result is proving that all dual-feasible solutions to the strengthened LP produce cost-allocations that satisfy the core property. This reduces the problem of finding a cost-allocation to that of finding a strengthened-LP-relative approximation algorithm. Existing algorithms imply improved cost-recovery ratios for families of sparse CIP instances. Finally, we show that the strengthened formulation simplifies and improves the analysis of a cross-monotone cost-allocation mechanism as well.

This paper presents a detailed evaluation of the efficiency of software-only techniques to mitigate SEU and SET in microprocessors. A set of well-known rules is presented and implemented automatically to transform an unprotected program into a hardened one. SEU and SET are injected in all sensitive areas of a MIPS-based microprocessor architecture. The efficiency of each rule and a combination of them are tested. Experimental results show the inefficiency of the control-flow techniques in detecting the majority of SEU and SET faults. Three effects of the non-detected faults are explained. The conclusions can lead designers in developing more efficient techniques to detect these types of faults.

Elixir is a dynamically-typed functional language running on the Erlang Virtual Machine, designed for building scalable and maintainable applications. Its characteristics have earned it a surging adoption by hundreds of industrial actors and tens of thousands of developers. Static typing seems nowadays to be the most important request coming from the Elixir community. We present a gradual type system we plan to include in the Elixir compiler, outline its characteristics and design principles, and show by some short examples how to use it in practice. Developing a static type system suitable for Erlang's family of languages has been an open research problem for almost two decades. Our system transposes to this family of languages a polymorphic type system with set-theoretic types and semantic subtyping. To do that, we had to improve and extend both semantic subtyping and the typing techniques thereof, to account for several characteristics of these languages -- and of Elixir in particular -- such as the arity of functions, the use of guards, a uniform treatment of records and dictionaries, the need for a new sound gradual typing discipline that does not rely on the insertion at compile time of specific run-time type-tests but, rather, takes into account both the type tests performed by the virtual machine and those explicitly added by the programmer. The system presented here is "gradually" being implemented and integrated in Elixir, but a prototype implementation is already available. The aim of this work is to serve as a longstanding reference that will be used to introduce types to Elixir programmers, as well as to hint at some future directions and possible evolutions of the Elixir language.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司