亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel performance metric for articulated robots with distributed directional sensors called the sensor observability analysis (SOA). These robot-mounted distributed directional sensors (e.g., joint torque sensors) change their individual sensing directions as the joints move. SOA transforms individual sensors axes in joint space to provide the cumulative sensing quality of these sensors to observe each task-space axis, akin to forward kinematics for sensors. For example, certain joint configurations may align joint torque sensors in such a way that they are unable to observe interaction forces in one or more task-space axes. The resultant sensor observability performance metrics can then be used in optimization and in null-space control to avoid sensor observability singular configurations or to maximize sensor observability in particular directions. We use the specific case of force sensing in serial robot manipulators to showcase the analysis. Parallels are drawn between sensor observability and the traditional kinematic manipulability; SOA is shown to be more generalizable in terms of analysing non-joint-mounted sensors and can potentially be applied to sensor types other than for force sensing. Simulations and experiments using a custom 3-DOF robot and the Baxter robot demonstrate the utility and importance of sensor observability in physical interactions.

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

Transportation missions in aerospace are limited to the capability of each aerospace robot and the properties of the target transported object, such as mass, inertia, and grasping locations. We present a novel decentralized adaptive controller design for multiple robots that can be implemented in different kinds of aerospace robots. Our controller adapts to unknown objects in different gravity environments. We validate our method in an aerial scenario using multiple fully actuated hexarotors with grasping capabilities, and a space scenario using a group of space tugs. In both scenarios, the robots transport a payload cooperatively through desired three-dimensional trajectories. We show that our method can adapt to unexpected changes that include the loss of robots during the transportation mission.

A classic task in robotics is tracking a target in the external environment. There are several well-documented approaches to this problem. This paper presents a novel approach to this problem using infrared time of flight sensors. The use of infrared time of flight sensors is not common as a tracking approach, typically used for simple motion detectors. However, with the approach highlighted in this paper they can be used to accurately track the position of a moving subject. Traditional approaches to the tracking problem often include cameras, or ultrasonic sensors. These approaches can be expensive and overcompensating in some use cases. The method focused on in this paper can be superior in terms of cost and simplicity.

The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.

This work introduces and assesses the efficiency of a monolithic $ph$MG multigrid framework designed for high-order discretizations of stationary Stokes systems using Taylor-Hood and Scott-Vogelius elements. The proposed approach integrates coarsening in both approximation order ($p$) and mesh resolution ($h$), to address the computational and memory efficiency challenges that are often encountered in conventional high-order numerical simulations. Our numerical results reveal that $ph$MG offers significant improvements over traditional spatial-coarsening-only multigrid ($h$MG) techniques for problems discretized with Taylor-Hood elements across a variety of problem sizes and discretization orders. In particular, the $ph$MG method exhibits superior performance in reducing setup and solve times, particularly when dealing with higher discretization orders and unstructured problem domains. For Scott-Vogelius discretizations, while monolithic $ph$MG delivers low iteration counts and competitive solve phase timings, it exhibits a discernibly slower setup phase when compared to a multilevel (non-monolithic) full-block-factorization (FBF) preconditioner where $ph$MG is employed only for the velocity unknowns. This is primarily due to the setup costs of the larger mixed-field relaxation patches with monolithic $ph$MG versus the patch setup costs with a single unknown type for FBF.

Political scientists are increasingly attuned to the promises and pitfalls of establishing causal effects. But the vital question for many is not if a causal effect exists but why and how it exists. Even so, many researchers avoid causal mediation analyses due to the assumptions required, instead opting to explore causal mechanisms through what we call intermediate outcome tests. These tests use the same research design used to estimate the effect of treatment on the outcome to estimate the effect of the treatment on one or more mediators, with authors often concluding that evidence of the latter is evidence of a causal mechanism. We show in this paper that, without further assumptions, this can neither establish nor rule out the existence of a causal mechanism. Instead, such conclusions about the indirect effect of treatment rely on implicit and usually very strong assumptions that are often unmet. Thus, such causal mechanism tests, though very common in political science, should not be viewed as a free lunch but rather should be used judiciously, and researchers should explicitly state and defend the requisite assumptions.

Pre-trained diffusion models utilized for image generation encapsulate a substantial reservoir of a priori knowledge pertaining to intricate textures. Harnessing the potential of leveraging this a priori knowledge in the context of image super-resolution presents a compelling avenue. Nonetheless, prevailing diffusion-based methodologies presently overlook the constraints imposed by degradation information on the diffusion process. Furthermore, these methods fail to consider the spatial variability inherent in the estimated blur kernel, stemming from factors such as motion jitter and out-of-focus elements in open-environment scenarios. This oversight results in a notable deviation of the image super-resolution effect from fundamental realities. To address these concerns, we introduce a framework known as Adaptive Multi-modal Fusion of \textbf{S}patially Variant Kernel Refinement with Diffusion Model for Blind Image \textbf{S}uper-\textbf{R}esolution (SSR). Within the SSR framework, we propose a Spatially Variant Kernel Refinement (SVKR) module. SVKR estimates a Depth-Informed Kernel, which takes the depth information into account and is spatially variant. Additionally, SVKR enhance the accuracy of depth information acquired from LR images, allowing for mutual enhancement between the depth map and blur kernel estimates. Finally, we introduce the Adaptive Multi-Modal Fusion (AMF) module to align the information from three modalities: low-resolution images, depth maps, and blur kernels. This alignment can constrain the diffusion model to generate more authentic SR results.

In distributed computing by mobile robots, robots are deployed over a region, continuous or discrete, operating through a sequence of \textit{look-compute-move} cycles. An extensive study has been carried out to understand the computational powers of different robot models. The models vary on the ability to 1)~remember constant size information and 2)~communicate constant size message. Depending on the abilities the different models are 1)~$\mathcal{OBLOT}$ (robots are oblivious and silent), 2)~$\mathcal{FSTA}$ (robots have finite states but silent), 3)~$\mathcal{FCOM}$ (robots are oblivious but can communicate constant size information) and, 4)~$\mathcal{LUMI}$ (robots have finite states and can communicate constant size information). Another factor that affects computational ability is the scheduler that decides the activation time of the robots. The main three schedulers are \textit{fully-synchronous}, \textit{semi-synchronous} and \textit{asynchronous}. Combining the models ($M$) with schedulers ($K$), we have twelve combinations $M^K$. In the euclidean domain, the comparisons between these twelve variants have been done in different works for transparent robots, opaque robots, and robots with limited visibility. There is a vacant space for similar works when robots are operating on discrete regions like networks. It demands separate research attention because there have been a series of works where robots operate on different networks, and there is a fundamental difference when robots are operating on a continuous domain versus a discrete domain in terms of robots' movement. This work contributes to filling the space by giving a full comparison table for all models with two synchronous schedulers: fully-synchronous and semi-synchronous.

This research presents a novel method for predicting service degradation (SD) in computer networks by leveraging early flow features. Our approach focuses on the observable (O) segments of network flows, particularly analyzing Packet Inter-Arrival Time (PIAT) values and other derived metrics, to infer the behavior of non-observable (NO) segments. Through a comprehensive evaluation, we identify an optimal O/NO split threshold of 10 observed delay samples, balancing prediction accuracy and resource utilization. Evaluating models including Logistic Regression, XGBoost, and Multi-Layer Perceptron, we find XGBoost outperforms others, achieving an F1-score of 0.74, balanced accuracy of 0.84, and AUROC of 0.97. Our findings highlight the effectiveness of incorporating comprehensive early flow features and the potential of our method to offer a practical solution for monitoring network traffic in resource-constrained environments. This approach ensures enhanced user experience and network performance by preemptively addressing potential SD, providing the basis for a robust framework for maintaining high-quality network services.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司