As artificial intelligence (AI) is integrated into various services and systems in society, many companies and organizations have proposed AI principles, policies, and made the related commitments. Conversely, some have proposed the need for independent audits, arguing that the voluntary principles adopted by the developers and providers of AI services and systems insufficiently address risk. This policy recommendation summarizes the issues related to the auditing of AI services and systems and presents three recommendations for promoting AI auditing that contribute to sound AI governance. Recommendation1.Development of institutional design for AI audits. Recommendation2.Training human resources for AI audits. Recommendation3. Updating AI audits in accordance with technological progress. In this policy recommendation, AI is assumed to be that which recognizes and predicts data with the last chapter outlining how generative AI should be audited.
Secure communication is considered with unreliable entanglement assistance, where the adversary may intercept the legitimate receiver's entanglement resource before communication takes place. The communication setting of unreliable assistance, without security aspects, was originally motivated by the extreme photon loss in practical communication systems. The operational principle is to adapt the transmission rate to the availability of entanglement assistance, without resorting to feedback and repetition. Here, we require secrecy as well. An achievable secrecy rate region is derived for general quantum wiretap channels, and a multi-letter secrecy capacity formula for the special class of degraded channels.
With the increasing deployment of machine learning models in many socially-sensitive tasks, there is a growing demand for reliable and trustworthy predictions. One way to accomplish these requirements is to allow a model to abstain from making a prediction when there is a high risk of making an error. This requires adding a selection mechanism to the model, which selects those examples for which the model will provide a prediction. The selective classification framework aims to design a mechanism that balances the fraction of rejected predictions (i.e., the proportion of examples for which the model does not make a prediction) versus the improvement in predictive performance on the selected predictions. Multiple selective classification frameworks exist, most of which rely on deep neural network architectures. However, the empirical evaluation of the existing approaches is still limited to partial comparisons among methods and settings, providing practitioners with little insight into their relative merits. We fill this gap by benchmarking 18 baselines on a diverse set of 44 datasets that includes both image and tabular data. Moreover, there is a mix of binary and multiclass tasks. We evaluate these approaches using several criteria, including selective error rate, empirical coverage, distribution of rejected instance's classes, and performance on out-of-distribution instances. The results indicate that there is not a single clear winner among the surveyed baselines, and the best method depends on the users' objectives.
Understanding the emergence of cooperation in systems of computational agents is crucial for the development of effective cooperative AI. Interaction among individuals in real-world settings are often sparse and occur within a broad spectrum of incentives, which often are only partially known. In this work, we explore how cooperation can arise among reinforcement learning agents in scenarios characterised by infrequent encounters, and where agents face uncertainty about the alignment of their incentives with those of others. To do so, we train the agents under a wide spectrum of environments ranging from fully competitive, to fully cooperative, to mixed-motives. Under this type of uncertainty we study the effects of mechanisms, such as reputation and intrinsic rewards, that have been proposed in the literature to foster cooperation in mixed-motives environments. Our findings show that uncertainty substantially lowers the agents' ability to engage in cooperative behaviour, when that would be the best course of action. In this scenario, the use of effective reputation mechanisms and intrinsic rewards boosts the agents' capability to act nearly-optimally in cooperative environments, while greatly enhancing cooperation in mixed-motive environments as well.
We argue that insurance can act as an analogon for the social situatedness of machine learning systems, hence allowing machine learning scholars to take insights from the rich and interdisciplinary insurance literature. Tracing the interaction of uncertainty, fairness and responsibility in insurance provides a fresh perspective on fairness in machine learning. We link insurance fairness conceptions to their machine learning relatives, and use this bridge to problematize fairness as calibration. In this process, we bring to the forefront two themes that have been largely overlooked in the machine learning literature: responsibility and aggregate-individual tensions.
One relevant aspect in the development of the Semantic Web framework is the achievement of a real inter-agents communication capability at the semantic level. The agents should be able to communicate and understand each other using standard communication protocols freely, that is, without needing a laborious a priori preparation, before the communication takes place. For that setting we present in this paper a proposal that promotes to describe standard communication protocols using Semantic Web technology (specifically, OWL-DL and SWRL). Those protocols are constituted by communication acts. In our proposal those communication acts are described as terms that belong to a communication acts ontology, that we have developed, called CommOnt. The intended semantics associated to the communication acts in the ontology is expressed through social commitments that are formalized as fluents in the Event Calculus. In summary, OWL-DL reasoners and rule engines help in our proposal for reasoning about protocols. We define some comparison relationships (dealing with notions of equivalence and specialization) between protocols used by agents from different systems.
In Information Retrieval, and more generally in Natural Language Processing, adapting models to specific domains is conducted through fine-tuning. Despite the successes achieved by this method and its versatility, the need for human-curated and labeled data makes it impractical to transfer to new tasks, domains, and/or languages when training data doesn't exist. Using the model without training (zero-shot) is another option that however suffers an effectiveness cost, especially in the case of first-stage retrievers. Numerous research directions have emerged to tackle these issues, most of them in the context of adapting to a task or a language. However, the literature is scarcer for domain (or topic) adaptation. In this paper, we address this issue of cross-topic discrepancy for a sparse first-stage retriever by transposing a method initially designed for language adaptation. By leveraging pre-training on the target data to learn domain-specific knowledge, this technique alleviates the need for annotated data and expands the scope of domain adaptation. Despite their relatively good generalization ability, we show that even sparse retrievers can benefit from our simple domain adaptation method.
Quantum communication networks (QCNs) utilize quantum mechanics for secure information transmission, but the reliance on fragile and expensive photonic quantum resources renders QCN resource optimization challenging. Unlike prior QCN works that relied on blindly compressing direct quantum embeddings of classical data, this letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations to extracts and embed only the relevant information from classical data into minimal high-dimensional quantum states that are accurately communicated over quantum channels with quantum communication and semantic fidelity measures. Simulation results indicate that, compared to semantic-agnostic QCN schemes, the proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.