亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.

相關內容

Deep generative models require large amounts of training data. This often poses a problem as the collection of datasets can be expensive and difficult, in particular datasets that are representative of the appropriate underlying distribution (e.g. demographic). This introduces biases in datasets which are further propagated in the models. We present an approach to construct an unbiased generative adversarial network (GAN) from an existing biased GAN by rebalancing the model distribution. We do so by generating balanced data from an existing imbalanced deep generative model using an evolutionary algorithm and then using this data to train a balanced generative model. Additionally, we propose a bias mitigation loss function that minimizes the deviation of the learned class distribution from being equiprobable. We show results for the StyleGAN2 models while training on the Flickr Faces High Quality (FFHQ) dataset for racial fairness and see that the proposed approach improves on the fairness metric by almost 5 times, whilst maintaining image quality. We further validate our approach by applying it to an imbalanced CIFAR10 dataset where we show that we can obtain comparable fairness and image quality as when training on a balanced CIFAR10 dataset which is also twice as large. Lastly, we argue that the traditionally used image quality metrics such as Frechet inception distance (FID) are unsuitable for scenarios where the class distributions are imbalanced and a balanced reference set is not available.

Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.

In recent years, various interacting particle samplers have been developed to sample from complex target distributions, such as those found in Bayesian inverse problems. These samplers are motivated by the mean-field limit perspective and implemented as ensembles of particles that move in the product state space according to coupled stochastic differential equations. The ensemble approximation and numerical time stepping used to simulate these systems can introduce bias and affect the invariance of the particle system with respect to the target distribution. To correct for this, we investigate the use of a Metropolization step, similar to the Metropolis-adjusted Langevin algorithm. We examine Metropolization of either the whole ensemble or smaller subsets of the ensemble, and prove basic convergence of the resulting ensemble Markov chain to the target distribution. Our numerical results demonstrate the benefits of this correction in numerical examples for popular interacting particle samplers such as ALDI, CBS, and stochastic SVGD.

This paper considers the epistemic justification for a simplicity preference in inductive inference that may be obtained from the machine learning framework of statistical learning theory. Uniting elements from both earlier arguments suggesting and rejecting such a justification, the paper spells out a qualified means-ends and model-relative justificatory argument, built on statistical learning theory's central mathematical learning guarantee for the method of empirical risk minimization.

Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.

While generalized linear mixed models (GLMMs) are a fundamental tool in applied statistics, many specifications -- such as those involving categorical factors with many levels or interaction terms -- can be computationally challenging to estimate due to the need to compute or approximate high-dimensional integrals. Variational inference (VI) methods are a popular way to perform such computations, especially in the Bayesian context. However, naive VI methods can provide unreliable uncertainty quantification. We show that this is indeed the case in the GLMM context, proving that standard VI (i.e. mean-field) dramatically underestimates posterior uncertainty in high-dimensions. We then show how appropriately relaxing the mean-field assumption leads to VI methods whose uncertainty quantification does not deteriorate in high-dimensions, and whose total computational cost scales linearly with the number of parameters and observations. Our theoretical and numerical results focus on GLMMs with Gaussian or binomial likelihoods, and rely on connections to random graph theory to obtain sharp high-dimensional asymptotic analysis. We also provide generic results, which are of independent interest, relating the accuracy of variational inference to the convergence rate of the corresponding coordinate ascent variational inference (CAVI) algorithm for Gaussian targets. Our proposed partially-factorized VI (PF-VI) methodology for GLMMs is implemented in the R package vglmer, see //github.com/mgoplerud/vglmer . Numerical results with simulated and real data examples illustrate the favourable computation cost versus accuracy trade-off of PF-VI.

This study investigates the misclassification excess risk bound in the context of 1-bit matrix completion, a significant problem in machine learning involving the recovery of an unknown matrix from a limited subset of its entries. Matrix completion has garnered considerable attention in the last two decades due to its diverse applications across various fields. Unlike conventional approaches that deal with real-valued samples, 1-bit matrix completion is concerned with binary observations. While prior research has predominantly focused on the estimation error of proposed estimators, our study shifts attention to the prediction error. This paper offers theoretical analysis regarding the prediction errors of two previous works utilizing the logistic regression model: one employing a max-norm constrained minimization and the other employing nuclear-norm penalization. Significantly, our findings demonstrate that the latter achieves the minimax-optimal rate without the need for an additional logarithmic term. These novel results contribute to a deeper understanding of 1-bit matrix completion by shedding light on the predictive performance of specific methodologies.

In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.

This paper proposes well-conditioned boundary integral equations based on the Burton-Miller method for solving transmission problems. The Burton-Miller method is widely accepted as a highly accurate numerical method based on the boundary integral equation for solving exterior wave problems. While this method can also be applied to solve the transmission problems, a straightforward formulation may yield ill-conditioned integral equations. Consequently, the resulting linear algebraic equations may involve a coefficient matrix with a huge condition number, leading to poor convergence of Krylov-based linear solvers. To address this challenge, our study enhances Burton-Miller-type boundary integral equations tailored for transmission problems by exploiting the Calderon formula. In cases where a single material exists in an unbounded host medium, we demonstrate the formulation of the boundary integral equation such that the underlying integral operator ${\cal A}$ is spectrally well-conditioned. Specifically, ${\cal A}$ can be designed in a simple manner that ensures ${\cal A}^2$ is bounded and has only a single eigenvalue accumulation point. Furthermore, we extend our analysis to the multi-material case, proving that the square of the proposed operator has only a few eigenvalues except for a compact perturbation. Through numerical examples of several benchmark problems, we illustrate that our formulation reduces the iteration number required by iterative linear solvers, even in the presence of material junction points; locations where three or more sub-domains meet on the boundary.

This paper integrates nonlinear-manifold reduced order models (NM-ROMs) with domain decomposition (DD). NM-ROMs approximate the FOM state in a nonlinear-manifold by training a shallow, sparse autoencoder using FOM snapshot data. These NM-ROMs can be advantageous over linear-subspace ROMs (LS-ROMs) for problems with slowly decaying Kolmogorov n-width. However, the number of NM-ROM parameters that need to be trained scales with the size of the FOM. Moreover, for "extreme-scale" problems, the storage of high-dimensional FOM snapshots alone can make ROM training expensive. To alleviate the training cost, this paper applies DD to the FOM, computes NM-ROMs on each subdomain, and couples them to obtain a global NM-ROM. This approach has several advantages: Subdomain NM-ROMs can be trained in parallel, involve fewer parameters to be trained than global NM-ROMs, require smaller subdomain FOM dimensional training data, and can be tailored to subdomain-specific features of the FOM. The shallow, sparse architecture of the autoencoder used in each subdomain NM-ROM allows application of hyper-reduction (HR), reducing the complexity caused by nonlinearity and yielding computational speedup of the NM-ROM. This paper provides the first application of NM-ROM (with HR) to a DD problem. In particular, it details an algebraic DD reformulation of the FOM, trains a NM-ROM with HR for each subdomain, and develops a sequential quadratic programming (SQP) solver to evaluate the coupled global NM-ROM. Theoretical convergence results for the SQP method and a priori and a posteriori error estimates for the DD NM-ROM with HR are provided. The proposed DD NM-ROM with HR approach is numerically compared to a DD LS-ROM with HR on the 2D steady-state Burgers' equation, showing an order of magnitude improvement in accuracy of the proposed DD NM-ROM over the DD LS-ROM.

北京阿比特科技有限公司