亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning (RL) is suitable for safety-critical domains where online exploration is not feasible. In such domains, decision-making should take into consideration the risk of catastrophic outcomes. In other words, decision-making should be risk-averse. An additional challenge of offline RL is avoiding distributional shift, i.e. ensuring that state-action pairs visited by the policy remain near those in the dataset. Previous works on risk in offline RL combine offline RL techniques (to avoid distributional shift), with risk-sensitive RL algorithms (to achieve risk-aversion). In this work, we propose risk-aversion as a mechanism to jointly address both of these issues. We propose a model-based approach, and use an ensemble of models to estimate epistemic uncertainty, in addition to aleatoric uncertainty. We train a policy that is risk-averse, and avoids high uncertainty actions. Risk-aversion to epistemic uncertainty prevents distributional shift, as areas not covered by the dataset have high epistemic uncertainty. Risk-aversion to aleatoric uncertainty discourages actions that are inherently risky due to environment stochasticity. Thus, by only introducing risk-aversion, we avoid distributional shift in addition to achieving risk-aversion to aleatoric risk. Our algorithm, 1R2R, achieves strong performance on deterministic benchmarks, and outperforms existing approaches for risk-sensitive objectives in stochastic domains.

相關內容

Counterfactual Explanations (CEs) are an important tool in Algorithmic Recourse for addressing two questions: 1. What are the crucial factors that led to an automated prediction/decision? 2. How can these factors be changed to achieve a more favorable outcome from a user's perspective? Thus, guiding the user's interaction with AI systems by proposing easy-to-understand explanations and easy-to-attain feasible changes is essential for the trustworthy adoption and long-term acceptance of AI systems. In the literature, various methods have been proposed to generate CEs, and different quality measures have been suggested to evaluate these methods. However, the generation of CEs is usually computationally expensive, and the resulting suggestions are unrealistic and thus non-actionable. In this paper, we introduce a new method to generate CEs for a pre-trained binary classifier by first shaping the latent space of an autoencoder to be a mixture of Gaussian distributions. CEs are then generated in latent space by linear interpolation between the query sample and the centroid of the target class. We show that our method maintains the characteristics of the input sample during the counterfactual search. In various experiments, we show that the proposed method is competitive based on different quality measures on image and tabular datasets -- efficiently returns results that are closer to the original data manifold compared to three state-of-the-art methods, which are essential for realistic high-dimensional machine learning applications.

Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in the presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems. We combine offline learning from past experience and online learning from current robot interaction with the unknown environment. These two ingredients enable a highly sample-efficient and adaptive learning process, capable of accurately inferring model dynamics in real-time even in operating regimes that greatly differ from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is heuristically conditioned to the aleatoric (data) uncertainty of the learned dynamics. This controller actively chooses the optimal control actions that (i) optimize the control performance and (ii) improve the efficiency of online learning sample collection. We demonstrate the effectiveness of our method through a series of challenging real-world experiments using a quadrotor system. Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.

Reinforcement learning (RL) so far has limited real-world applications. One key challenge is that typical RL algorithms heavily rely on a reset mechanism to sample proper initial states; these reset mechanisms, in practice, are expensive to implement due to the need for human intervention or heavily engineered environments. To make learning more practical, we propose a generic no-regret reduction to systematically design reset-free RL algorithms. Our reduction turns the reset-free RL problem into a two-player game. We show that achieving sublinear regret in this two-player game would imply learning a policy that has both sublinear performance regret and sublinear total number of resets in the original RL problem. This means that the agent eventually learns to perform optimally and avoid resets. To demonstrate the effectiveness of this reduction, we design an instantiation for linear Markov decision processes, which is the first provably correct reset-free RL algorithm.

Robot learning is often difficult due to the expense of gathering data. The need for large amounts of data can, and should, be tackled with effective algorithms and leveraging expert information on robot dynamics. Bayesian reinforcement learning (BRL), thanks to its sample efficiency and ability to exploit prior knowledge, is uniquely positioned as such a solution method. Unfortunately, the application of BRL has been limited due to the difficulties of representing expert knowledge as well as solving the subsequent inference problem. This paper advances BRL for robotics by proposing a specialized framework for physical systems. In particular, we capture this knowledge in a factored representation, then demonstrate the posterior factorizes in a similar shape, and ultimately formalize the model in a Bayesian framework. We then introduce a sample-based online solution method, based on Monte-Carlo tree search and particle filtering, specialized to solve the resulting model. This approach can, for example, utilize typical low-level robot simulators and handle uncertainty over unknown dynamics of the environment. We empirically demonstrate its efficiency by performing on-robot learning in two human-robot interaction tasks with uncertainty about human behavior, achieving near-optimal performance after only a handful of real-world episodes. A video of learned policies is at //youtu.be/H9xp60ngOes.

In this paper, we present \textsc{JoinGym}, an efficient and lightweight query optimization environment for reinforcement learning (RL). Join order selection (JOS) is a classic NP-hard combinatorial optimization problem from database query optimization and can serve as a practical testbed for the generalization capabilities of RL algorithms. We describe how to formulate each of the left-deep and bushy variants of the JOS problem as a Markov Decision Process (MDP), and we provide an implementation adhering to the standard Gymnasium API. We highlight that our implementation \textsc{JoinGym} is completely based on offline traces of all possible joins, which enables RL practitioners to easily and quickly test their methods on a realistic data management problem without needing to setup any systems. Moreover, we also provide all possible join traces on $3300$ novel SQL queries generated from the IMDB dataset. Upon benchmarking popular RL algorithms, we find that at least one method can obtain near-optimal performance on train-set queries but their performance degrades by several orders of magnitude on test-set queries. This gap motivates further research for RL algorithms that generalize well in multi-task combinatorial optimization problems.

Offline reinforcement learning (RL) has received considerable attention in recent years due to its attractive capability of learning policies from offline datasets without environmental interactions. Despite some success in the single-agent setting, offline multi-agent RL (MARL) remains to be a challenge. The large joint state-action space and the coupled multi-agent behaviors pose extra complexities for offline policy optimization. Most existing offline MARL studies simply apply offline data-related regularizations on individual agents, without fully considering the multi-agent system at the global level. In this work, we present OMIGA, a new offline m ulti-agent RL algorithm with implicit global-to-local v alue regularization. OMIGA provides a principled framework to convert global-level value regularization into equivalent implicit local value regularizations and simultaneously enables in-sample learning, thus elegantly bridging multi-agent value decomposition and policy learning with offline regularizations. Based on comprehensive experiments on the offline multi-agent MuJoCo and StarCraft II micro-management tasks, we show that OMIGA achieves superior performance over the state-of-the-art offline MARL methods in almost all tasks.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司