Quantum computing has the potential to solve problems that are intractable for classical systems, yet the high error rates in contemporary quantum devices often exceed tolerable limits for useful algorithm execution. Quantum Error Correction (QEC) mitigates this by employing redundancy, distributing quantum information across multiple data qubits and utilizing syndrome qubits to monitor their states for errors. The syndromes are subsequently interpreted by a decoding algorithm to identify and correct errors in the data qubits. This task is complex due to the multiplicity of error sources affecting both data and syndrome qubits as well as syndrome extraction operations. Additionally, identical syndromes can emanate from different error sources, necessitating a decoding algorithm that evaluates syndromes collectively. Although machine learning (ML) decoders such as multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs) have been proposed, they often focus on local syndrome regions and require retraining when adjusting for different code distances. We introduce a transformer-based QEC decoder which employs self-attention to achieve a global receptive field across all input syndromes. It incorporates a mixed loss training approach, combining both local physical error and global parity label losses. Moreover, the transformer architecture's inherent adaptability to variable-length inputs allows for efficient transfer learning, enabling the decoder to adapt to varying code distances without retraining. Evaluation on six code distances and ten different error configurations demonstrates that our model consistently outperforms non-ML decoders, such as Union Find (UF) and Minimum Weight Perfect Matching (MWPM), and other ML decoders, thereby achieving best logical error rates. Moreover, the transfer learning can save over 10x of training cost.
Recently the state space models (SSMs) with efficient hardware-aware designs, i.e., Mamba, have shown great potential for long sequence modeling. Building efficient and generic vision backbones purely upon SSMs is an appealing direction. However, representing visual data is challenging for SSMs due to the position-sensitivity of visual data and the requirement of global context for visual understanding. In this paper, we show that the reliance of visual representation learning on self-attention is not necessary and propose a new generic vision backbone with bidirectional Mamba blocks (Vim), which marks the image sequences with position embeddings and compresses the visual representation with bidirectional state space models. On ImageNet classification, COCO object detection, and ADE20k semantic segmentation tasks, Vim achieves higher performance compared to well-established vision transformers like DeiT, while also demonstrating significantly improved computation & memory efficiency. For example, Vim is 2.8$\times$ faster than DeiT and saves 86.8% GPU memory when performing batch inference to extract features on images with a resolution of 1248$\times$1248. The results demonstrate that Vim is capable of overcoming the computation & memory constraints on performing Transformer-style understanding for high-resolution images and it has great potential to become the next-generation backbone for vision foundation models. Code is available at //github.com/hustvl/Vim.
Serverless computing relieves developers from the burden of resource management, thus providing ease-of-use to the users and the opportunity to optimize resource utilization for the providers. However, today's serverless systems lack performance guarantees for function invocations, thus limiting support for performance-critical applications: we observed severe performance variability (up to 6x). Providers lack visibility into user functions and hence find it challenging to right-size them: we observed heavy resource underutilization (up to 80%). To understand the causes behind the performance variability and underutilization, we conducted a measurement study of commonly deployed serverless functions and learned that the function performance and resource utilization depend crucially on function semantics and inputs. Our key insight is to delay making resource allocation decisions until after the function inputs are available. We introduce Shabari, a resource management framework for serverless systems that makes decisions as late as possible to right-size each invocation to meet functions' performance objectives (SLOs) and improve resource utilization. Shabari uses an online learning agent to right-size each function invocation based on the features of the function input and makes cold-start-aware scheduling decisions. For a range of serverless functions and inputs, Shabari reduces SLO violations by 11-73% while not wasting any vCPUs and reducing wasted memory by 64-94% in the median case, compared to state-of-the-art systems, including Aquatope, Parrotfish, and Cypress.
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we propose VoiceFlow, an acoustic model that utilizes a rectified flow matching algorithm to achieve high synthesis quality with a limited number of sampling steps. VoiceFlow formulates the process of generating mel-spectrograms into an ordinary differential equation conditional on text inputs, whose vector field is then estimated. The rectified flow technique then effectively straightens its sampling trajectory for efficient synthesis. Subjective and objective evaluations on both single and multi-speaker corpora showed the superior synthesis quality of VoiceFlow compared to the diffusion counterpart. Ablation studies further verified the validity of the rectified flow technique in VoiceFlow.
Analyzing the worst-case time complexity of a code is a crucial task in computer science and software engineering for ensuring the efficiency, reliability, and robustness of software systems. However, it is well-known that the problem of determining the worst-case time complexity of a given code written in general-purpose programming language is theoretically undecidable by the famous Halting problem proven by Alan Turing. Thus, we move towards more realistic scenarios where the inputs and outputs of a program exist. This allows us to discern the correctness of given codes, challenging to analyze their time complexity exhaustively. In response to this challenge, we introduce CodeComplex, a novel source code dataset where each code is manually annotated with a corresponding worst-case time complexity. CodeComplex comprises 4,900 Java codes and an equivalent number of Python codes, all sourced from programming competitions and annotated with complexity labels by a panel of algorithmic experts. To the best of our knowledge, CodeComplex stands as the most extensive code dataset tailored for predicting complexity. Subsequently, we present the outcomes of our experiments employing various baseline models, leveraging state-of-the-art neural models in code comprehension like CodeBERT, GraphCodeBERT, UniXcoder, PLBART, CodeT5, CodeT5+, and ChatGPT. We analyze how the dataset impacts the model's learning in predicting time complexity.
Traffic forecasting, a crucial application of spatio-temporal graph (STG) learning, has traditionally relied on deterministic models for accurate point estimations. Yet, these models fall short of identifying latent risks of unexpected volatility in future observations. To address this gap, probabilistic methods, especially variants of diffusion models, have emerged as uncertainty-aware solutions. However, existing diffusion methods typically focus on generating separate future time series for individual sensors in the traffic network, resulting in insufficient involvement of spatial network characteristics in the probabilistic learning process. To better leverage spatial dependencies and systematic patterns inherent in traffic data, we propose SpecSTG, a novel spectral diffusion framework. Our method generates the Fourier representation of future time series, transforming the learning process into the spectral domain enriched with spatial information. Additionally, our approach incorporates a fast spectral graph convolution designed for Fourier input, alleviating the computational burden associated with existing models. Numerical experiments show that SpecSTG achieves outstanding performance with traffic flow and traffic speed datasets compared to state-of-the-art baselines. The source code for SpecSTG is available at //anonymous.4open.science/r/SpecSTG.
Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at night and explores state-of-the-art methodologies proposed in recent years to address this issue. These methodologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, which have shown promising results in enhancing pedestrian detection performance under challenging lighting conditions. Furthermore, the paper highlights current research directions in the field and identifies potential solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection techniques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been used in less than six percent of the works.
Ensemble modeling has been widely used to solve complex problems as it helps to improve overall performance and generalization. In this paper, we propose a novel TemporalAugmenter approach based on ensemble modeling for augmenting the temporal information capturing for long-term and short-term dependencies in data integration of two variations of recurrent neural networks in two learning streams to obtain the maximum possible temporal extraction. Thus, the proposed model augments the extraction of temporal dependencies. In addition, the proposed approach reduces the preprocessing and prior stages of feature extraction, which reduces the required energy to process the models built upon the proposed TemporalAugmenter approach, contributing towards green AI. Moreover, the proposed model can be simply integrated into various domains including industrial, medical, and human-computer interaction applications. Our proposed approach empirically evaluated the speech emotion recognition, electrocardiogram signal, and signal quality examination tasks as three different signals with varying complexity and different temporal dependency features.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.