Stochastic sampling algorithms such as Langevin Monte Carlo are inspired by physical systems in a heat bath. Their equilibrium distribution is the canonical ensemble given by a prescribed target distribution, so they must balance fluctuation and dissipation as dictated by the fluctuation-dissipation theorem. In contrast to the common belief, we show that the fluctuation-dissipation theorem is not required because only the configuration space distribution, and not the full phase space distribution, needs to be canonical. We propose a continuous-time Microcanonical Langevin Monte Carlo (MCLMC) as a dissipation-free system of stochastic differential equations (SDE). We derive the corresponding Fokker-Planck equation and show that the stationary distribution is the microcanonical ensemble with the desired canonical distribution on configuration space. We prove that MCLMC is ergodic for any nonzero amount of stochasticity, and for smooth, convex potentials, the expectation values converge exponentially fast. Furthermore, the deterministic drift and the stochastic diffusion separately preserve the stationary distribution. This uncommon property is attractive for practical implementations as it implies that the drift-diffusion discretization schemes are bias-free, so the only source of bias is the discretization of the deterministic dynamics. We applied MCLMC on a lattice $\phi^4$ model, where Hamiltonian Monte Carlo (HMC) is currently the state-of-the-art integrator. For the same accuracy, MCLMC converges 12 times faster than HMC on an $8\times8$ lattice. On a $64\times64$ lattice, it is already 32 times faster. The trend is expected to persist to larger lattices, which are of particular interest, for example, in lattice quantum chromodynamics.
Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{//github.com/Namco0816/ProxyQA}.
The remarkable achievements of Artificial Intelligence (AI) algorithms, particularly in Machine Learning (ML) and Deep Learning (DL), have fueled their extensive deployment across multiple sectors, including Software Engineering (SE). However, due to their black-box nature, these promising AI-driven SE models are still far from being deployed in practice. This lack of explainability poses unwanted risks for their applications in critical tasks, such as vulnerability detection, where decision-making transparency is of paramount importance. This paper endeavors to elucidate this interdisciplinary domain by presenting a systematic literature review of approaches that aim to improve the explainability of AI models within the context of SE. The review canvasses work appearing in the most prominent SE & AI conferences and journals, and spans 63 papers across 21 unique SE tasks. Based on three key Research Questions (RQs), we aim to (1) summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches. Based on our findings, we identified a set of challenges remaining to be addressed in existing studies, together with a roadmap highlighting potential opportunities we deemed appropriate and important for future work.
The Sparse Identification of Nonlinear Dynamics (SINDy) algorithm can be applied to stochastic differential equations to estimate the drift and the diffusion function using data from a realization of the SDE. The SINDy algorithm requires sample data from each of these functions, which is typically estimated numerically from the data of the state. We analyze the performance of the previously proposed estimates for the drift and diffusion function to give bounds on the error for finite data. However, since this algorithm only converges as both the sampling frequency and the length of trajectory go to infinity, obtaining approximations within a certain tolerance may be infeasible. To combat this, we develop estimates with higher orders of accuracy for use in the SINDy framework. For a given sampling frequency, these estimates give more accurate approximations of the drift and diffusion functions, making SINDy a far more feasible system identification method.
The family of log-concave density functions contains various kinds of common probability distributions. Due to the shape restriction, it is possible to find the nonparametric estimate of the density, for example, the nonparametric maximum likelihood estimate (NPMLE). However, the associated uncertainty quantification of the NPMLE is less well developed. The current techniques for uncertainty quantification are Bayesian, using a Dirichlet process prior combined with the use of Markov chain Monte Carlo (MCMC) to sample from the posterior. In this paper, we start with the NPMLE and use a version of the martingale posterior distribution to establish uncertainty about the NPMLE. The algorithm can be implemented in parallel and hence is fast. We prove the convergence of the algorithm by constructing suitable submartingales. We also illustrate results with different models and settings and some real data, and compare our method with that within the literature.
Different conflicting optimization criteria arise naturally in various Deep Learning scenarios. These can address different main tasks (i.e., in the setting of Multi-Task Learning), but also main and secondary tasks such as loss minimization versus sparsity. The usual approach is a simple weighting of the criteria, which formally only works in the convex setting. In this paper, we present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs) with respect to several tasks. By employing this scalarization technique, the algorithm can identify all optimal solutions of the original problem while reducing its complexity to a sequence of single-objective problems. The simplified problems are then solved using an Augmented Lagrangian method, enabling the use of popular optimization techniques such as Adam and Stochastic Gradient Descent, while efficaciously handling constraints. Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with a particular focus on Deep Multi-Task models, which are typically designed with a very large number of weights to perform equally well on multiple tasks. Through experiments conducted on two Machine Learning datasets, we demonstrate the possibility of adaptively sparsifying the model during training without significantly impacting its performance, if we are willing to apply task-specific adaptations to the network weights. The code is available at //github.com/salomonhotegni/MDMTN
We propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10\% inference time compared to NeRF-based methods. Code and more results will be available at //David-Dou.github.io/CoSSegGaussians.
Receiver operating characteristic (ROC) analysis is widely used for evaluating diagnostic systems. Recent studies have shown that estimating an area under ROC curve (AUC) with standard cross-validation methods suffers from a large bias. The leave-pair-out (LPO) cross-validation has been shown to correct this bias. However, while LPO produces an almost unbiased estimate of AUC, it does not provide a ranking of the data needed for plotting and analyzing the ROC curve. In this study, we propose a new method called tournament leave-pair-out (TLPO) cross-validation. This method extends LPO by creating a tournament from pair comparisons to produce a ranking for the data. TLPO preserves the advantage of LPO for estimating AUC, while it also allows performing ROC analyses. We have shown using both synthetic and real world data that TLPO is as reliable as LPO for AUC estimation, and confirmed the bias in leave-one-out cross-validation on low-dimensional data. As a case study on ROC analysis, we also evaluate how reliably sensitivity and specificity can be estimated from TLPO ROC curves.
Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).