Most existing ultra-high resolution (UHR) segmentation methods always struggle in the dilemma of balancing memory cost and local characterization accuracy, which are both taken into account in our proposed Guided Patch-Grouping Wavelet Transformer (GPWFormer) that achieves impressive performances. In this work, GPWFormer is a Transformer ($\mathcal{T}$)-CNN ($\mathcal{C}$) mutual leaning framework, where $\mathcal{T}$ takes the whole UHR image as input and harvests both local details and fine-grained long-range contextual dependencies, while $\mathcal{C}$ takes downsampled image as input for learning the category-wise deep context. For the sake of high inference speed and low computation complexity, $\mathcal{T}$ partitions the original UHR image into patches and groups them dynamically, then learns the low-level local details with the lightweight multi-head Wavelet Transformer (WFormer) network. Meanwhile, the fine-grained long-range contextual dependencies are also captured during this process, since patches that are far away in the spatial domain can also be assigned to the same group. In addition, masks produced by $\mathcal{C}$ are utilized to guide the patch grouping process, providing a heuristics decision. Moreover, the congruence constraints between the two branches are also exploited to maintain the spatial consistency among the patches. Overall, we stack the multi-stage process in a pyramid way. Experiments show that GPWFormer outperforms the existing methods with significant improvements on five benchmark datasets.
Given imbalanced data, it is hard to train a good classifier using deep learning because of the poor generalization of minority classes. Traditionally, the well-known synthetic minority oversampling technique (SMOTE) for data augmentation, a data mining approach for imbalanced learning, has been used to improve this generalization. However, it is unclear whether SMOTE also benefits deep learning. In this work, we study why the original SMOTE is insufficient for deep learning, and enhance SMOTE using soft labels. Connecting the resulting soft SMOTE with Mixup, a modern data augmentation technique, leads to a unified framework that puts traditional and modern data augmentation techniques under the same umbrella. A careful study within this framework shows that Mixup improves generalization by implicitly achieving uneven margins between majority and minority classes. We then propose a novel margin-aware Mixup technique that more explicitly achieves uneven margins. Extensive experimental results demonstrate that our proposed technique yields state-of-the-art performance on deep imbalanced classification while achieving superior performance on extremely imbalanced data. The code is open-sourced in our developed package //github.com/ntucllab/imbalanced-DL to foster future research in this direction.
To support the extremely high spectral efficiency and energy efficiency requirements, and emerging applications of future wireless communications, holographic multiple-input multiple-output (H-MIMO) technology is envisioned as one of the most promising enablers. It can potentially bring extra degrees-of-freedom for communications and signal processing, including spatial multiplexing in line-of-sight (LoS) channels and electromagnetic (EM) field processing performed using specialized devices, to attain the fundamental limits of wireless communications. In this context, EM-domain channel modeling is critical to harvest the benefits offered by H-MIMO. Existing EM-domain channel models are built based on the tensor Green function, which require prior knowledge of the global position and/or the relative distances and directions of the transmit/receive antenna elements. Such knowledge may be difficult to acquire in real-world applications due to extensive measurements needed for obtaining this data. To overcome this limitation, we propose a transmit-receive parameter separable channel model methodology in which the EM-domain (or holographic) channel can be simply acquired from the distance/direction measured between the center-points between the transmit and receive surfaces, and the local positions between the transmit and receive elements, thus avoiding extensive global parameter measurements. Analysis and numerical results showcase the effectiveness of the proposed channel modeling approach in approximating the H-MIMO channel, and achieving the theoretical channel capacity.
Dynamically scheduled high-level synthesis (HLS) achieves higher throughput than static HLS for codes with unpredictable memory accesses and control flow. However, excessive dataflow scheduling results in circuits that use more resources and have a slower critical path, even when only a part of the circuit exhibits dynamic behavior. Recent work has shown that marking parts of a dataflow circuit for static scheduling can save resources and improve performance (hybrid scheduling), but the dynamic part of the circuit still bottlenecks the critical path. We propose instead to selectively introduce dynamic scheduling into static HLS. This paper presents an algorithm for identifying code regions amenable to dynamic scheduling and shows a methodology for introducing dynamically scheduled basic blocks, loops, and memory operations into static HLS. Our algorithm is informed by modulo-scheduling and can be integrated into any modulo-scheduled HLS tool. On a set of ten benchmarks, we show that our approach achieves on average an up to 3.7$\times$ and 3$\times$ speedup against dynamic and hybrid scheduling, respectively, with an area overhead of 1.3$\times$ and frequency degradation of 0.74$\times$ when compared to static HLS.
Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domain that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling -- EGS) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks.
The increasing capabilities of quantum computing hardware and the challenge of realizing deep quantum circuits require fully automated and efficient tools for compiling quantum circuits. To express arbitrary circuits in a sequence of native gates specific to the quantum computer architecture, it is necessary to make algorithms portable across the landscape of quantum hardware providers. In this work, we present a compiler capable of transforming and optimizing a quantum circuit targeting a shuttling-based trapped-ion quantum processor. It consists of custom algorithms set on top of the quantum circuit framework Pytket. The performance was evaluated for a wide range of quantum circuits and the results show that the gate counts can be reduced by factors up to 5.1 compared to standard Pytket and up to 2.2 compared to standard Qiskit compilation.
On the heels of orthogonal time frequency space (OTFS) modulation, the recently discovered affine frequency division multiplexing (AFDM) is a promising waveform for the sixth-generation wireless network. In this paper, we study the widely-used embedded pilot-aided (EPA) channel estimation in multiple-input multiple-output AFDM (MIMO-AFDM) system with fractional Doppler shifts. We first formulate the vectorized input-output relationship of MIMO-AFDM, and theoretically prove that MIMO-AFDM can achieve full diversity in doubly selective channels. Then we illustrate the implementation of EPA channel estimation in MIMO-AFDM and unveil that serious inter-Doppler interference (IDoI) occurs if we try to estimate the channel gain, delay shift, and Doppler shift of each propagation path. To address this issue, the diagonal reconstructability of AFDM subchannel matrix is studied and a low-complexity embedded pilot-aided diagonal reconstruction (EPA-DR) channel estimation scheme is proposed. The EPA-DR scheme calculates the AFDM effective channel matrix directly without estimating the three channel parameters, eliminating the severe IDoI inherently. Since the effective channel matrix is necessary for MIMO-AFDM receive processing, we believe this is an important step to bring AFDM towards practical communication systems. Finally, we investigate the orthogonal resource allocation of affine frequency division multiple access (AFDMA) system. Simulation results validate the effectiveness of the proposed EPA-DR scheme.
Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.
Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to construct a hypercolumn representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.
The scarcity of labelled data makes training Deep Neural Network (DNN) models in bioacoustic applications challenging. In typical bioacoustics applications, manually labelling the required amount of data can be prohibitively expensive. To effectively identify both new and current classes, DNN models must continue to learn new features from a modest amount of fresh data. Active Learning (AL) is an approach that can help with this learning while requiring little labelling effort. Nevertheless, the use of fixed feature extraction approaches limits feature quality, resulting in underutilization of the benefits of AL. We describe an AL framework that addresses this issue by incorporating feature extraction into the AL loop and refining the feature extractor after each round of manual annotation. In addition, we use raw audio processing rather than spectrograms, which is a novel approach. Experiments reveal that the proposed AL framework requires 14.3%, 66.7%, and 47.4% less labelling effort on benchmark audio datasets ESC-50, UrbanSound8k, and InsectWingBeat, respectively, for a large DNN model and similar savings on a microcontroller-based counterpart. Furthermore, we showcase the practical relevance of our study by incorporating data from conservation biology projects.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.