We present NCCSG, a nonsmooth optimization method. In each iteration, NCCSG finds the best length-constrained descent direction by considering the worst bound over all local subgradients. NCCSG can take advantage of local smoothness or local strong convexity of the objective function. We prove a few global convergence rates of NCCSG. For well-behaved nonsmooth functions (characterized by the weak smooth property), NCCSG converges in $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ iterations, where $\epsilon$ is the desired optimality gap. For smooth functions and strongly-convex smooth functions, NCCSG achieves the lower bound of convergence rates of blackbox first-order methods, i.e., $O(\frac{1}{\epsilon})$ for smooth functions and $O(\log \frac{1}{\epsilon})$ for strongly-convex smooth functions. The efficiency of NCCSG depends on the efficiency of solving a minimax optimization problem involving the subdifferential of the objective function in each iteration.
Major progress has been made in the previous decade to characterize the asymptotic behavior of regularized M-estimators in high-dimensional regression problems in the proportional asymptotic regime where the sample size $n$ and the number of features $p$ are increasing simultaneously such that $n/p\to \delta \in(0,\infty)$, using powerful tools such as Approximate Message Passing or the Convex Gaussian Min-Max Theorem (CGMT). The asymptotic error and behavior of the regularized M-estimator is then typically described by a system of nonlinear equations with a few scalar unknowns, and the solution to this system precisely characterize the asymptotic error. Application of the CGMT and related machinery requires the existence of a solution to this low-dimensional system of equations. This paper resolves the question of existence of solution to this low-dimensional system for the case of linear models with independent additive noise, when both the data-fitting loss function and regularization penalty are separable and convex. Such existence result for solution to the nonlinear system were previously known under strong convexity for specific estimators such as the Lasso. The main idea behind this existence result is inspired by an argument developed \cite{montanari2019generalization,celentano2020lasso} in different contexts: By constructing an ad-hoc convex minimization problem in an infinite dimensional Hilbert space, the existence of the Lagrange multiplier for this optimization problem makes it possible to construct explicitly solutions to the low-dimensional system of interest. The conditions under which we derive this existence result exactly correspond to the side of the phase transition where perfect recovery $\hat x= x_0$ fails, so that these conditions are optimal.
By abstracting over well-known properties of De Bruijn's representation with nameless dummies, we design a new theory of syntax with variable binding and capture-avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi's approach, with which we establish a strong formal link. We also show that our theory easily incorporates simple types and equations between terms.
A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. Here we show that such a result does not generalize to quartic polynomials and 2-query algorithms, even when we allow for additive approximations. We also show that the additive approximation implied by their result is tight for bounded bilinear forms, which gives a new characterization of the Grothendieck constant in terms of 1-query quantum algorithms. Along the way we provide reformulations of the completely bounded norm of a form, and its dual norm.
In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lam\'{e} parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive, bounded and Lipschitz-continuous function.
Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called \emph{predict-then-optimize} procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing \emph{decision-focused} predictions, i.e., to build predictive models that are constructed with the goal of minimizing a \emph{regret} measure on the decisions taken with them. We formulate the exact expected regret minimization as a pessimistic bilevel optimization model. Then, using duality arguments, we reformulate it as a non-convex quadratic optimization problem. Finally, we show various computational techniques to achieve tractability. We report extensive computational results on shortest-path instances with uncertain cost vectors. Our results indicate that our approach can improve training performance over the approach of Elmachtoub and Grigas (2022), a state-of-the-art method for decision-focused learning.
This paper presents the development of a complete CAD-compatible framework for structural shape optimization in 3D. The boundaries of the domain are described using NURBS while the interior is discretized with B\'ezier tetrahedra. The tetrahedral mesh is obtained from the mesh generator software Gmsh. A methodology to reconstruct the NURBS surfaces from the triangular faces of the boundary mesh is presented. The description of the boundary is used for the computation of the analytical sensitivities with respect to the control points employed in surface design. Further, the mesh is updated at each iteration of the structural optimization process by a pseudo-elastic moving mesh method. In this procedure, the existing mesh is deformed to match the updated surface and therefore reduces the need for remeshing. Numerical examples are presented to test the performance of the proposed method. The use of the movable mesh technique results in a considerable decrease in the computational effort for the numerical examples.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
The paper introduces a new meshfree pseudospectral method based on Gaussian radial basis functions (RBFs) collocation to solve fractional Poisson equations. Hypergeometric functions are used to represent the fractional Laplacian of Gaussian RBFs, enabling an efficient computation of stiffness matrix entries. Unlike existing RBF-based methods, our approach ensures a Toeplitz structure in the stiffness matrix with equally spaced RBF centers, enabling efficient matrix-vector multiplications using fast Fourier transforms. We conduct a comprehensive study on the shape parameter selection, addressing challenges related to ill-conditioning and numerical stability. The main contribution of our work includes rigorous stability analysis and error estimates of the Gaussian RBF collocation method, representing a first attempt at the rigorous analysis of RBF-based methods for fractional PDEs to the best of our knowledge. We conduct numerical experiments to validate our analysis and provide practical insights for implementation.
We present a non-intrusive gradient algorithm for parameter estimation problems in non-stationary elasticity. To avoid multiple (and potentially expensive) solutions of the underlying partial differential equation (PDE), we approximate the PDE solver by a neural network within the gradient algorithm. The network is trained offline for a given set of parameters. The algorithm is applied to an unsteady linear-elastic contact problem; its convergence and approximation properties are investigated numerically.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.