In many settings, such as scientific inference, optimization, and transfer learning, the learner has a well-defined objective, which can be treated as estimation of a target parameter, and no intrinsic interest in characterizing the entire data-generating process. Usually, the learner must also contend with additional sources of uncertainty or variables -- with nuisance parameters. Bayesian active learning, or sequential optimal experimental design, can straightforwardly accommodate the presence of nuisance parameters, and so is a natural active learning framework for such problems. However, the introduction of nuisance parameters can lead to bias in the Bayesian learner's estimate of the target parameters, a phenomenon we refer to as negative interference. We characterize the threat of negative interference and how it fundamentally changes the nature of the Bayesian active learner's task. We show that the extent of negative interference can be extremely large, and that accurate estimation of the nuisance parameters is critical to reducing it. The Bayesian active learner is confronted with a dilemma: whether to spend a finite acquisition budget in pursuit of estimation of the target or of the nuisance parameters. Our setting encompasses Bayesian transfer learning as a special case, and our results shed light on the phenomenon of negative transfer between learning environments.
Ensuring the highest training throughput to maximize resource efficiency, while maintaining fairness among users, is critical for deep learning (DL) training in heterogeneous GPU clusters. However, current DL schedulers provide only limited fairness properties and suboptimal training throughput, impeding tenants from effectively leveraging heterogeneous resources. The underlying design challenge stems from inherent conflicts between efficiency and fairness properties. In this paper, we introduce OEF, a new resource allocation framework specifically developed for achieving optimal resource efficiency and ensuring diverse fairness properties in heterogeneous GPU clusters. By integrating resource efficiency and fairness within a global optimization framework, OEF is capable of providing users with maximized overall efficiency, as well as various guarantees of fairness, in both cooperative and non-cooperative environments. We have implemented OEF in a cluster resource manager and conducted large-scale experiments, showing that OEF can improve the overall training throughput by up to 32% while improving fairness compared to state-of-the-art heterogeneity-aware schedulers.
The latest advancements in machine learning and deep learning have brought forth the concept of semantic similarity, which has proven immensely beneficial in multiple applications and has largely replaced keyword search. However, evaluating semantic similarity and conducting searches for a specific query across various documents continue to be a complicated task. This complexity is due to the multifaceted nature of the task, the lack of standard benchmarks, whereas these challenges are further amplified for Arabic language. This paper endeavors to establish a straightforward yet potent benchmark for semantic search in Arabic. Moreover, to precisely evaluate the effectiveness of these metrics and the dataset, we conduct our assessment of semantic search within the framework of retrieval augmented generation (RAG).
Formalization of real analysis offers a chance to rebuild traditional proofs of important theorems as unambiguous theories that can be interactively explored. This paper provides a comprehensive overview of the Lebesgue Differentiation Theorem formalized in the Coq proof assistant, from which the first Fundamental Theorem of Calculus (FTC) for the Lebesgue integral is obtained as a corollary. Proving the first FTC in this way has the advantage of decomposing into loosely-coupled theories of moderate size and of independent interest that lend themselves well to incremental and collaborative development. We explain how we formalize all the topological constructs and all the standard lemmas needed to eventually relate the definitions of derivability and of Lebesgue integration of MathComp-Analysis, a formalization of analysis developed on top of the Mathematical Components library. In the course of this experiment, we substantially enrich MathComp-Analysis and even devise a new proof for Urysohn's lemma.
This study is about the implementation of a reinforcement learning algorithm in the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick and place the randomly placed block at a random target point in an unknown environment. The obstacle is randomly moving which creates a hurdle in picking the object. The objective of the robot is to avoid the obstacle and pick the block with constraints to a fixed timestamp. In this literature, we have applied a deep deterministic policy gradient (DDPG) algorithm and compared the model's efficiency with dense and sparse rewards.
Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensive text corpora. To this end, we introduce a framework that prompts LLMs to generate topics from a given set of documents and establish evaluation protocols to assess the clustering efficacy of LLMs. Our findings indicate that LLMs with appropriate prompts can stand out as a viable alternative, capable of generating relevant topic titles and adhering to human guidelines to refine and merge topics. Through in-depth experiments and evaluation, we summarise the advantages and constraints of employing LLMs in topic extraction.
A crucial aspect of a rumor detection model is its ability to generalize, particularly its ability to detect emerging, previously unknown rumors. Past research has indicated that content-based (i.e., using solely source posts as input) rumor detection models tend to perform less effectively on unseen rumors. At the same time, the potential of context-based models remains largely untapped. The main contribution of this paper is in the in-depth evaluation of the performance gap between content and context-based models specifically on detecting new, unseen rumors. Our empirical findings demonstrate that context-based models are still overly dependent on the information derived from the rumors' source post and tend to overlook the significant role that contextual information can play. We also study the effect of data split strategies on classifier performance. Based on our experimental results, the paper also offers practical suggestions on how to minimize the effects of temporal concept drift in static datasets during the training of rumor detection methods.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.