Software reliability growth models (SRGM) enable failure data collected during testing. Specifically, nonhomogeneous Poisson process (NHPP) SRGM are the most commonly employed models. While software reliability growth models are important, efficient modeling of complex software systems increases the complexity of models. Increased model complexity presents a challenge in identifying robust and computationally efficient algorithms to identify model parameters and reduces the generalizability of the models. Existing studies on traditional software reliability growth models suggest that NHPP models characterize defect data as a smooth continuous curve and fail to capture changes in the defect discovery process. Therefore, the model fits well under ideal conditions, but it is not adaptable and will only fit appropriately shaped data. Neural networks and other machine learning methods have been applied to greater effect [5], however limited due to lack of large samples of defect data especially at earlier stages of testing.
Decision Trees (DTs) are commonly used for many machine learning tasks due to their high degree of interpretability. However, learning a DT from data is a difficult optimization problem, as it is non-convex and non-differentiable. Therefore, common approaches learn DTs using a greedy growth algorithm that minimizes the impurity locally at each internal node. Unfortunately, this greedy procedure can lead to inaccurate trees. In this paper, we present a novel approach for learning hard, axis-aligned DTs with gradient descent. The proposed method uses backpropagation with a straight-through operator on a dense DT representation, to jointly optimize all tree parameters. Our approach outperforms existing methods on binary classification benchmarks and achieves competitive results for multi-class tasks. The method is available under: //github.com/s-marton/GradTree
Qualitative data analysis provides insight into the underlying perceptions and experiences within unstructured data. However, the time-consuming nature of the coding process, especially for larger datasets, calls for innovative approaches, such as the integration of Large Language Models (LLMs). This short paper presents initial findings from a study investigating the integration of LLMs for coding tasks of varying complexity in a real-world dataset. Our results highlight the challenges inherent in coding with extensive codebooks and contexts, both for human coders and LLMs, and suggest that the integration of LLMs into the coding process requires a task-by-task evaluation. We examine factors influencing the complexity of coding tasks and initiate a discussion on the usefulness and limitations of incorporating LLMs in qualitative research.
Task and Motion Planning (TAMP) algorithms can generate plans that combine logic and motion aspects for robots. However, these plans are sensitive to interference and control errors. To make TAMP more applicable in real-world, we propose the modular multi-level replanning TAMP framework(MMRF), blending the probabilistic completeness of sampling-based TAMP algorithm with the robustness of reactive replanning. MMRF generates an nominal plan from the initial state, then dynamically reconstructs this nominal plan in real-time, reorders robot manipulations. Following the logic-level adjustment, GMRF will try to replan a new motion path to ensure the updated plan is feasible at the motion level. Finally, we conducted real-world experiments involving stack and rearrange task domains. The result demonstrate MMRF's ability to swiftly complete tasks in scenarios with varying degrees of interference.
Treatment effects in regression discontinuity designs (RDDs) are often estimated using local regression methods. However, global approximation methods are generally deemed inefficient. In this paper, we propose a semiparametric framework tailored for estimating treatment effects in RDDs. Our global approach conceptualizes the identification of treatment effects within RDDs as a partially linear modeling problem, with the linear component capturing the treatment effect. Furthermore, we utilize the P-spline method to approximate the nonparametric function and develop procedures for inferring treatment effects within this framework. We demonstrate through Monte Carlo simulations that the proposed method performs well across various scenarios. Furthermore, we illustrate using real-world datasets that our global approach may result in more reliable inference.
In the evolving landscape of recommender systems, the integration of Large Language Models (LLMs) such as ChatGPT marks a new era, introducing the concept of Recommendation via LLM (RecLLM). While these advancements promise unprecedented personalization and efficiency, they also bring to the fore critical concerns regarding fairness, particularly in how recommendations might inadvertently perpetuate or amplify biases associated with sensitive user attributes. In order to address these concerns, our study introduces a comprehensive evaluation framework, CFaiRLLM, aimed at evaluating (and thereby mitigating) biases on the consumer side within RecLLMs. Our research methodically assesses the fairness of RecLLMs by examining how recommendations might vary with the inclusion of sensitive attributes such as gender, age, and their intersections, through both similarity alignment and true preference alignment. By analyzing recommendations generated under different conditions-including the use of sensitive attributes in user prompts-our framework identifies potential biases in the recommendations provided. A key part of our study involves exploring how different detailed strategies for constructing user profiles (random, top-rated, recent) impact the alignment between recommendations made without consideration of sensitive attributes and those that are sensitive-attribute-aware, highlighting the bias mechanisms within RecLLMs. The findings in our study highlight notable disparities in the fairness of recommendations, particularly when sensitive attributes are integrated into the recommendation process, either individually or in combination. The analysis demonstrates that the choice of user profile sampling strategy plays a significant role in affecting fairness outcomes, highlighting the complexity of achieving fair recommendations in the era of LLMs.
Data valuation is essential for quantifying data's worth, aiding in assessing data quality and determining fair compensation. While existing data valuation methods have proven effective in evaluating the value of Euclidean data, they face limitations when applied to the increasingly popular graph-structured data. Particularly, graph data valuation introduces unique challenges, primarily stemming from the intricate dependencies among nodes and the exponential growth in value estimation costs. To address the challenging problem of graph data valuation, we put forth an innovative solution, Precedence-Constrained Winter (PC-Winter) Value, to account for the complex graph structure. Furthermore, we develop a variety of strategies to address the computational challenges and enable efficient approximation of PC-Winter. Extensive experiments demonstrate the effectiveness of PC-Winter across diverse datasets and tasks.
Recent advancements in large-scale models have showcased remarkable generalization capabilities in various tasks. However, integrating multimodal processing into these models presents a significant challenge, as it often comes with a high computational burden. To address this challenge, we introduce a new parameter-efficient multimodal tuning strategy for large models in this paper, referred to as Multimodal Infusion Tuning (MiT). MiT leverages decoupled self-attention mechanisms within large language models to effectively integrate information from diverse modalities such as images and acoustics. In MiT, we also design a novel adaptive rescaling strategy at the head level, which optimizes the representation of infused multimodal features. Notably, all foundation models are kept frozen during the tuning process to reduce the computational burden(only 2.5\% parameters are tunable). We conduct experiments across a range of multimodal tasks, including image-related tasks like referring segmentation and non-image tasks such as sentiment analysis. Our results showcase that MiT achieves state-of-the-art performance in multimodal understanding while significantly reducing computational overhead(10\% of previous methods). Moreover, our tuned model exhibits robust reasoning abilities even in complex scenarios.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.