亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the numerical evaluation of a class of double integrals with respect to a pair of self-similar measures over a self-similar fractal set (the attractor of an iterated function system), with a weakly singular integrand of logarithmic or algebraic type. In a recent paper [Gibbs, Hewett and Moiola, Numer. Alg., 2023] it was shown that when the fractal set is "disjoint" in a certain sense (an example being the Cantor set), the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular integrals, which can be readily approximated numerically. In this paper we present a methodology for extending these results to cases where the fractal is non-disjoint but non-overlapping (in the sense that the open set condition holds). Our approach applies to many well-known examples including the Sierpinski triangle, the Vicsek fractal, the Sierpinski carpet, and the Koch snowflake.

相關內容

We propose a simple method for simulating a general class of non-unitary dynamics as a linear combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem into a dilated linear system problem, or on the spectral mapping theorem. The latter is the mathematical foundation of many quantum algorithms for solving a wide variety of tasks involving non-unitary processes, such as the quantum singular value transformation (QSVT). The LCHS method can achieve optimal cost in terms of state preparation. We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.

We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.

A second-order finite volume scheme is proposed and analyzed for a 2X2 system of non-linear partial differential equations. These equations model the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. The well-balancedness of the scheme is ensured through a modified limitation approach allowing the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. It is also shown through the numerical experiments that the second-order scheme reduces the finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the first-order schemes existing in the literature.

Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

We are interested in the high-order approximation of anisotropic advection-diffusion problems on general polytopal partitions. We study two hybrid schemes, both built upon the Hybrid High-Order technology. The first one hinges on exponential fitting and is linear, whereas the second is nonlinear. The existence of solutions is established for both schemes. Both schemes are also shown to enjoy a discrete entropy structure, ensuring that the discrete long-time behaviour of solutions mimics the PDE one. The nonlinear scheme is designed so as to enforce the positivity of discrete solutions. On the contrary, we display numerical evidence indicating that the linear scheme violates positivity, whatever the order. Finally, we verify numerically that the nonlinear scheme has optimal order of convergence, expected long-time behaviour, and that raising the polynomial degree results, also in the nonlinear case, in an efficiency gain.

Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.

The equioscillation theorem interleaves the Haar condition, the existence and uniqueness and strong uniqueness of the optimal Chebyshev approximation and its characterization by the equioscillation condition in a way that cannot extend to multivariate approximation: Rice~[\emph{Transaction of the AMS}, 1963] says ''A form of alternation is still present for functions of several variables. However, there is apparently no simple method of distinguishing between the alternation of a best approximation and the alternation of other approximating functions. This is due to the fact that there is no natural ordering of the critical points.'' In addition, in the context of multivariate approximation the Haar condition is typically not satisfied and strong uniqueness may hold or not. The present paper proposes an multivariate equioscillation theorem, which includes such a simple alternation condition on error extrema, existence and a sufficient condition for strong uniqueness. To this end, the relationship between the properties interleaved in the univariate equioscillation theorem is clarified: first, a weak Haar condition is proposed, which simply implies existence. Second, the equioscillation condition is shown to be equivalent to the optimality condition of convex optimization, hence characterizing optimality independently from uniqueness. It is reformulated as the synchronized oscillations between the error extrema and the components of a related Haar matrix kernel vector, in a way that applies to multivariate approximation. Third, an additional requirement on the involved Haar matrix and its kernel vector, called strong equioscillation, is proved to be sufficient for the strong uniqueness of the solution. These three disconnected conditions give rise to a multivariate equioscillation theorem, where existence, characterization by equioscillation and strong uniqueness are separated, without involving the too restrictive Haar condition. Remarkably, relying on optimality condition of convex optimization gives rise to a quite simple proof. Instances of multivariate problems with strongly unique, non-strong but unique and non-unique solutions are presented to illustrate the scope of the theorem.

The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

北京阿比特科技有限公司