亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many fundamental problems affecting the care of critically ill patients lead to similar analytical challenges: physicians cannot easily estimate the effects of at-risk medical conditions or treatments because the causal effects of medical conditions and drugs are entangled. They also cannot easily perform studies: there are not enough high-quality data for high-dimensional observational causal inference, and RCTs often cannot ethically be conducted. However, mechanistic knowledge is available, including how drugs are absorbed into the body, and the combination of this knowledge with the limited data could potentially suffice -- if we knew how to combine them. In this work, we present a framework for interpretable estimation of causal effects for critically ill patients under exactly these complex conditions: interactions between drugs and observations over time, patient data sets that are not large, and mechanistic knowledge that can substitute for lack of data. We apply this framework to an extremely important problem affecting critically ill patients, namely the effect of seizures and other potentially harmful electrical events in the brain (called epileptiform activity -- EA) on outcomes. Given the high stakes involved and the high noise in the data, interpretability is critical for troubleshooting such complex problems. Interpretability of our matched groups allowed neurologists to perform chart reviews to verify the quality of our causal analysis. For instance, our work indicates that a patient who experiences a high level of seizure-like activity (75% high EA burden) and is untreated for a six-hour window, has, on average, a 16.7% increased chance of adverse outcomes such as severe brain damage, lifetime disability, or death. We find that patients with mild but long-lasting EA (average EA burden >= 50%) have their risk of an adverse outcome increased by 11.2%.

相關內容

Class-incremental learning for semantic segmentation (CiSS) is presently a highly researched field which aims at updating a semantic segmentation model by sequentially learning new semantic classes. A major challenge in CiSS is overcoming the effects of catastrophic forgetting, which describes the sudden drop of accuracy on previously learned classes after the model is trained on a new set of classes. Despite latest advances in mitigating catastrophic forgetting, the underlying causes of forgetting specifically in CiSS are not well understood. Therefore, in a set of experiments and representational analyses, we demonstrate that the semantic shift of the background class and a bias towards new classes are the major causes of forgetting in CiSS. Furthermore, we show that both causes mostly manifest themselves in deeper classification layers of the network, while the early layers of the model are not affected. Finally, we demonstrate how both causes are effectively mitigated utilizing the information contained in the background, with the help of knowledge distillation and an unbiased cross-entropy loss.

The COVID-19 pandemic has posed a heavy burden to the healthcare system worldwide and caused huge social disruption and economic loss. Many deep learning models have been proposed to conduct clinical predictive tasks such as mortality prediction for COVID-19 patients in intensive care units using Electronic Health Record (EHR) data. Despite their initial success in certain clinical applications, there is currently a lack of benchmarking results to achieve a fair comparison so that we can select the optimal model for clinical use. Furthermore, there is a discrepancy between the formulation of traditional prediction tasks and real-world clinical practice in intensive care. To fill these gaps, we propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units. The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients. We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks, including 5 machine learning models, 6 basic deep learning models and 6 deep learning predictive models specifically designed for EHR data. We provide benchmarking results using data from two real-world COVID-19 EHR datasets. Both datasets are publicly available without needing any inquiry and one dataset can be accessed on request. We provide fair, reproducible benchmarking results for two tasks. We deploy all experiment results and models on an online platform. We also allow clinicians and researchers to upload their data to the platform and get quick prediction results using our trained models. We hope our efforts can further facilitate deep learning and machine learning research for COVID-19 predictive modeling.

With more and better clinical data being captured outside of clinical studies and greater data sharing of clinical studies, external controls may become a more attractive alternative to randomized clinical trials. Both industry and regulators recognize that in situations where a randomized study cannot be performed, external controls can provide the needed contextualization to allow a better interpretation of studies without a randomized control. It is also agreed that external controls will not fully replace randomized clinical trials as the gold standard for formal proof of efficacy in drug development and the yardstick of clinical research. However, it remains unclear in which situations conclusions about efficacy and a positive benefit/risk can reliably be based on the use of an external control. This paper will provide an overview on types of external control, their applications and the different sources of bias their use may incur, and discuss potential mitigation steps. It will also give recommendations on how the use of external controls can be justified.

Recently vision transformers have been shown to be competitive with convolution-based methods (CNNs) broadly across multiple vision tasks. The less restrictive inductive bias of transformers endows greater representational capacity in comparison with CNNs. However, in the image classification setting this flexibility comes with a trade-off with respect to sample efficiency, where transformers require ImageNet-scale training. This notion has carried over to video where transformers have not yet been explored for video classification in the low-labeled or semi-supervised settings. Our work empirically explores the low data regime for video classification and discovers that, surprisingly, transformers perform extremely well in the low-labeled video setting compared to CNNs. We specifically evaluate video vision transformers across two contrasting video datasets (Kinetics-400 and SomethingSomething-V2) and perform thorough analysis and ablation studies to explain this observation using the predominant features of video transformer architectures. We even show that using just the labeled data, transformers significantly outperform complex semi-supervised CNN methods that leverage large-scale unlabeled data as well. Our experiments inform our recommendation that semi-supervised learning video work should consider the use of video transformers in the future.

To efficiently analyse system reliability, graphical tools such as fault trees and Bayesian networks are widely adopted. In this article, instead of conventional graphical tools, we apply a probabilistic graphical model called the chain event graph (CEG) to represent failure and deteriorating processes of a system. The CEG is derived from an event tree and can flexibly represent the unfolding of the asymmetric processes. We customise a domain-specific intervention on the CEG called the remedial intervention for maintenance. This fixes the root causes of a failure and returns the status of the system to as good as new: a novel type of intervention designed specifically for reliability applications. The semantics of the CEG are expressive enough to capture the necessary intervention calculus. Furthermore through the bespoke causal algebras the CEG provides a transparent framework to guide and express the rationale behind predictive inferences about the effects of various types of the remedial intervention. A back-door theorem is adapted to apply to these interventions to help discover when causal effects can be identified from a partially observed system.

Disease risk models can identify high-risk patients and help clinicians provide more personalized care. However, risk models developed on one dataset may not generalize across diverse subpopulations of patients in different datasets and may have unexpected performance. It is challenging for clinical researchers to inspect risk models across different subgroups without any tools. Therefore, we developed an interactive visualization system called RMExplorer (Risk Model Explorer) to enable interactive risk model assessment. Specifically, the system allows users to define subgroups of patients by selecting clinical, demographic, or other characteristics, to explore the performance and fairness of risk models on the subgroups, and to understand the feature contributions to risk scores. To demonstrate the usefulness of the tool, we conduct a case study, where we use RMExplorer to explore three atrial fibrillation risk models by applying them to the UK Biobank dataset of 445,329 individuals. RMExplorer can help researchers to evaluate the performance and biases of risk models on subpopulations of interest in their data.

A considerable amount of various types of data have been collected during the COVID-19 pandemic, the analysis and interpretation of which have been indispensable for curbing the spread of the disease. As the pandemic moves to an endemic state, the data collected during the pandemic will continue to be rich sources for further studying and understanding the impacts of the pandemic on various aspects of our society. On the other hand, na\"{i}ve release and sharing of the information can be associated with serious privacy concerns. In this study, we use three common but distinct data types collected during the pandemic (case surveillance tabular data, case location data, and contact tracing networks) to illustrate the publication and sharing of granular information and individual-level pandemic data in a privacy-preserving manner. We leverage and build upon the concept of differential privacy to generate and release privacy-preserving data for each data type. We investigate the inferential utility of privacy-preserving information through simulation studies at different levels of privacy guarantees and demonstrate the approaches in real-life data. All the approaches employed in the study are straightforward to apply. Our study generates statistical evidence on the practical feasibility of sharing pandemic data with privacy guarantees and on how to balance the statistical utility of released information during this process.

Effective surveillance on the long-term public health impact due to war and terrorist attacks remain limited. Such health issues are commonly under-reported, specifically for a large group of individuals. For this purpose, efficient estimation of the size of the population under the risk of physical and mental health hazards is of utmost necessity. In this context, multiple system estimation is a potential strategy that has recently been applied to quantify under-reported events allowing heterogeneity among the individuals and dependence between the sources of information. To model such complex phenomena, a novel trivariate Bernoulli model is developed, and an estimation methodology using Monte Carlo based EM algorithm is proposed which successfully overcomes the identifiability issue present in the model. Simulation results show superiority of the performance of the proposed method over existing competitors and robustness under model mis-specifications. The method is applied to analyze real case studies on the Gulf War and 9/11 Terrorist Attack at World Trade Center, US. Estimates of the incident rate and survival rate are computed by adjusting the undercount estimates for an unbiased evaluation of the post-war syndromes. The results provide interesting insights that can assist in effective decision making and policy formulation for monitoring the health status of post-war survivors.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司