亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The premise of the Multi-disciplinary Conference on Reinforcement Learning and Decision Making is that multiple disciplines share an interest in goal-directed decision making over time. The idea of this paper is to sharpen and deepen this premise by proposing a perspective on the decision maker that is substantive and widely held across psychology, artificial intelligence, economics, control theory, and neuroscience, which I call the "common model of the intelligent agent". The common model does not include anything specific to any organism, world, or application domain. The common model does include aspects of the decision maker's interaction with its world (there must be input and output, and a goal) and internal components of the decision maker (for perception, decision-making, internal evaluation, and a world model). I identify these aspects and components, note that they are given different names in different disciplines but refer essentially to the same ideas, and discuss the challenges and benefits of devising a neutral terminology that can be used across disciplines. It is time to recognize and build on the convergence of multiple diverse disciplines on a substantive common model of the intelligent agent.

相關內容

Are intelligent machines really intelligent? Is the underlying philosophical concept of intelligence satisfactory for describing how the present systems work? Is understanding a necessary and sufficient condition for intelligence? If a machine could understand, should we attribute subjectivity to it? This paper addresses the problem of deciding whether the so-called "intelligent machines" are capable of understanding, instead of merely processing signs. It deals with the relationship between syntaxis and semantics. The main thesis concerns the inevitability of semantics for any discussion about the possibility of building conscious machines, condensed into the following two tenets: "If a machine is capable of understanding (in the strong sense), then it must be capable of combining rules and intuitions"; "If semantics cannot be reduced to syntaxis, then a machine cannot understand." Our conclusion states that it is not necessary to attribute understanding to a machine in order to explain its exhibited "intelligent" behavior; a merely syntactic and mechanistic approach to intelligence as a task-solving tool suffices to justify the range of operations that it can display in the current state of technological development.

In early May 2022, the Terra ecosystem collapsed after the algorithmic stablecoin failed to maintain its peg. Emergency measures were taken by Terraform Labs (TFL) in an attempt to protect Luna and UST, but then were abruptly abandoned by TFL for Luna 2.0 several days later. At this time, the Luna Classic blockchain has been left crippled and in limbo for the last two months. In the face of impossible odds, the Luna Classic community has self organized and rallied to build and restore the blockchain. This technical document outlines the steps we, the community, have taken towards the emergency management of the Luna Classic blockchain in the weeks after the UST depeg. We outline precisely what would be implemented on-chain to mitigate the concerns of affected stakeholders, and build trust for external partners, exchanges, and third-party developers. For the Luna Classic community, validators, and developers, this outlines concrete steps on how passed governance can and will be achieved. We openly audit our own code and welcome any feedback for improvement. Let us move forward together as the true community blockchain.

Autonomous intelligent agents deployed to the real-world need to be robust against adversarial attacks on sensory inputs. Existing work in reinforcement learning focuses on minimum-norm perturbation attacks, which were originally introduced to mimic a notion of perceptual invariance in computer vision. In this paper, we note that such minimum-norm perturbation attacks can be trivially detected by victim agents, as these result in observation sequences that are not consistent with the victim agent's actions. Furthermore, many real-world agents, such as physical robots, commonly operate under human supervisors, which are not susceptible to such perturbation attacks. As a result, we propose to instead focus on illusionary attacks, a novel form of attack that is consistent with the world model of the victim agent. We provide a formal definition of this novel attack framework, explore its characteristics under a variety of conditions, and conclude that agents must seek realism feedback to be robust to illusionary attacks.

As learning machines increase their influence on decisions concerning human lives, analyzing their fairness properties becomes a subject of central importance. Yet, our best tools for measuring the fairness of learning systems are rigid fairness metrics encapsulated as mathematical one-liners, offer limited power to the stakeholders involved in the prediction task, and are easy to manipulate when we exhort excessive pressure to optimize them. To advance these issues, we propose to shift focus from shaping fairness metrics to curating the distributions of examples under which these are computed. In particular, we posit that every claim about fairness should be immediately followed by the tagline "Fair under what examples, and collected by whom?". By highlighting connections to the literature in domain generalization, we propose to measure fairness as the ability of the system to generalize under multiple stress tests -- distributions of examples with social relevance. We encourage each stakeholder to curate one or multiple stress tests containing examples reflecting their (possibly conflicting) interests. The machine passes or fails each stress test by falling short of or exceeding a pre-defined metric value. The test results involve all stakeholders in a discussion about how to improve the learning system, and provide flexible assessments of fairness dependent on context and based on interpretable data. We provide full implementation guidelines for stress testing, illustrate both the benefits and shortcomings of this framework, and introduce a cryptographic scheme to enable a degree of prediction accountability from system providers.

Security and safety are intertwined concepts in the world of computing. In recent years, the terms "sustainable security" and "sustainable safety" came into fashion and are being used referring to a variety of systems properties ranging from efficiency to profitability, and sometimes meaning that a product or service is good for people and planet. This leads to confusing perceptions of products where customers might expect a sustainable product to be developed without child labour, while the producer uses the term to signify that their new product uses marginally less power than the previous generation of that products. Even in research on sustainably safe and secure ICT, these different notions of terminology are prevalent. As researchers we often work towards optimising our subject of study towards one specific sustainability metric - let's say energy consumption - while being blissfully unaware of, e.g., social impacts, life-cycle impacts, or rebound effects of such optimisations. In this paper I dissect the idea of sustainable safety and security, starting from the questions of what we want to sustain, and for whom we want to sustain it. I believe that a general "people and planet" answer is inadequate here because this form of sustainability cannot be the property of a single industry sector but must be addressed by society as a whole. However, with sufficient understanding of life-cycle impacts we may very well be able to devise research and development efforts, and inform decision making processes towards the use of integrated safety and security solutions that help us to address societal challenges in the context of the climate and ecological crises, and that are aligned with concepts such as intersectionality and climate justice. Of course, these solutions can only be effective if they are embedded in societal and economic change towards more frugal uses of data and ICT.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司