亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The incompressibility method is a counting argument in the framework of algorithmic complexity that permits discovering properties that are satisfied by most objects of a class. This paper gives a preliminary insight into Kolmogorov's complexity of groupoids and some algebras. The incompressibility method shows that almost all the groupoids are asymmetric and simple: Only trivial or constant homomorphisms are possible. However, highly random groupoids allow subgroupoids with interesting restrictions that reveal intrinsic structural properties. We also study the issue of the algebraic varieties and wonder which equational identities allow randomness.

相關內容

State-of-the-art methods for Bayesian inference in state-space models are (a) conditional sequential Monte Carlo (CSMC) algorithms; (b) sophisticated 'classical' MCMC algorithms like MALA, or mGRAD from Titsias and Papaspiliopoulos (2018, arXiv:1610.09641v3 [stat.ML]). The former propose $N$ particles at each time step to exploit the model's 'decorrelation-over-time' property and thus scale favourably with the time horizon, $T$ , but break down if the dimension of the latent states, $D$, is large. The latter leverage gradient-/prior-informed local proposals to scale favourably with $D$ but exhibit sub-optimal scalability with $T$ due to a lack of model-structure exploitation. We introduce methods which combine the strengths of both approaches. The first, Particle-MALA, spreads $N$ particles locally around the current state using gradient information, thus extending MALA to $T > 1$ time steps and $N > 1$ proposals. The second, Particle-mGRAD, additionally incorporates (conditionally) Gaussian prior dynamics into the proposal, thus extending the mGRAD algorithm to $T > 1$ time steps and $N > 1$ proposals. We prove that Particle-mGRAD interpolates between CSMC and Particle-MALA, resolving the 'tuning problem' of choosing between CSMC (superior for highly informative prior dynamics) and Particle-MALA (superior for weakly informative prior dynamics). We similarly extend other 'classical' MCMC approaches like auxiliary MALA, aGRAD, and preconditioned Crank-Nicolson-Langevin (PCNL) to $T > 1$ time steps and $N > 1$ proposals. In experiments, for both highly and weakly informative prior dynamics, our methods substantially improve upon both CSMC and sophisticated 'classical' MCMC approaches.

A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.

The problem of straggler mitigation in distributed matrix multiplication (DMM) is considered for a large number of worker nodes and a fixed small finite field. Polynomial codes and matdot codes are generalized by making use of algebraic function fields (i.e., algebraic functions over an algebraic curve) over a finite field. The construction of optimal solutions is translated to a combinatorial problem on the Weierstrass semigroups of the corresponding algebraic curves. Optimal or almost optimal solutions are provided. These have the same computational complexity per worker as classical polynomial and matdot codes, and their recovery thresholds are almost optimal in the asymptotic regime (growing number of workers and a fixed finite field).

The celebrated Kleene fixed point theorem is crucial in the mathematical modelling of recursive specifications in Denotational Semantics. In this paper we discuss whether the hypothesis of the aforementioned result can be weakened. An affirmative answer to the aforesaid inquiry is provided so that a characterization of those properties that a self-mapping must satisfy in order to guarantee that its set of fixed points is non-empty when no notion of completeness are assumed to be satisfied by the partially ordered set. Moreover, the case in which the partially ordered set is coming from a quasi-metric space is treated in depth. Finally, an application of the exposed theory is obtained. Concretely, a mathematical method to discuss the asymptotic complexity of those algorithms whose running time of computing fulfills a recurrence equation is presented. Moreover, the aforesaid method retrieves the fixed point based methods that appear in the literature for asymptotic complexity analysis of algorithms. However, our new method improves the aforesaid methods because it imposes fewer requirements than those that have been assumed in the literature and, in addition, it allows to state simultaneously upper and lower asymptotic bounds for the running time computing.

In this paper, we provide conditions that hulls of generalized Reed-Solomon (GRS) codes are also GRS codes from algebraic geometry codes. If the conditions are not satisfied, we provide a method of linear algebra to find the bases of hulls of GRS codes and give formulas to compute their dimensions. Besides, we explain that the conditions are too good to be improved by some examples. Moreover, we show self-orthogonal and self-dual GRS codes.

We consider the posets of equivalence relations on finite sets under the standard embedding ordering and under the consecutive embedding ordering. In the latter case, the relations are also assumed to have an underlying linear order, which governs consecutive embeddings. For each poset we ask the well quasi-order and atomicity decidability questions: Given finitely many equivalence relations $\rho_1,\dots,\rho_k$, is the downward closed set Av$(\rho_1,\dots,\rho_k)$ consisting of all equivalence relations which do not contain any of $\rho_1,\dots,\rho_k$: (a) well-quasi-ordered, meaning that it contains no infinite antichains? and (b) atomic, meaning that it is not a union of two proper downward closed subsets, or, equivalently, that it satisfies the joint embedding property?

We state and give self contained proofs of semidefinite programming characterizations of the numerical radius and its dual norm for matrices. We show that the computation of the numerical radius and its dual norm within $\varepsilon$ precision are polynomially time computable in the data and $|\log \varepsilon |$ using either the ellipsoid method or the short step, primal interior point method. We apply our results to give a simple formula for the spectral and nuclear norm of $2\times n\times m$ real tensor in terms of the numerical radius and its dual norm.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司