亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We state and give self contained proofs of semidefinite programming characterizations of the numerical radius and its dual norm for matrices. We show that the computation of the numerical radius and its dual norm within $\varepsilon$ precision are polynomially time computable in the data and $|\log \varepsilon |$ using either the ellipsoid method or the short step, primal interior point method. We apply our results to give a simple formula for the spectral and nuclear norm of $2\times n\times m$ real tensor in terms of the numerical radius and its dual norm.

相關內容

We propose and analyze a novel approach to construct structure preserving approximations for the Poisson-Nernst-Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the $L^2$ projection, we construct a second order Crank-Nicolson type finite difference scheme, which is linear (exclude the very efficient $L^2$ projection part), positivity preserving and mass conserving. Rigorous error estimates in $L^2$ norm are established, which are both second order accurate in space and time. The other choice of projection, e.g. $H^1$ projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.

The minimum covariance determinant (MCD) estimator is a popular method for robustly estimating the mean and covariance of multivariate data. We extend the MCD to the setting where the observations are matrices rather than vectors and introduce the matrix minimum covariance determinant (MMCD) estimators for robust parameter estimation. These estimators hold equivariance properties, achieve a high breakdown point, and are consistent under elliptical matrix-variate distributions. We have also developed an efficient algorithm with convergence guarantees to compute the MMCD estimators. Using the MMCD estimators, we can compute robust Mahalanobis distances that can be used for outlier detection. Those distances can be decomposed into outlyingness contributions from each cell, row, or column of a matrix-variate observation using Shapley values, a concept for outlier explanation recently introduced in the multivariate setting. Simulations and examples reveal the excellent properties and usefulness of the robust estimators.

We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre's hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel-Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.

Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.

Chemical and biochemical reactions can exhibit surprisingly different behaviours from multiple steady-state solutions to oscillatory solutions and chaotic behaviours. Such behaviour has been of great interest to researchers for many decades. The Briggs-Rauscher, Belousov-Zhabotinskii and Bray-Liebhafsky reactions, for which periodic variations in concentrations can be visualized by changes in colour, are experimental examples of oscillating behaviour in chemical systems. These type of systems are modelled by a system of partial differential equations coupled by a nonlinearity. However, analysing the pattern, one may suspect that the dynamic is only generated by a finite number of spatial Fourier modes. In fluid dynamics, it is shown that for large times, the solution is determined by a finite number of spatial Fourier modes, called determining modes. In the article, we first introduce the concept of determining modes and show that, indeed, it is sufficient to characterise the dynamic by only a finite number of spatial Fourier modes. In particular, we analyse the exact number of the determining modes of $u$ and $v$, where the couple $(u,v)$ solves the following stochastic system \begin{equation*} \partial_t{u}(t) = r_1\Delta u(t) -\alpha_1u(t)- \gamma_1u(t)v^2(t) + f(1 - u(t)) + g(t),\quad \partial_t{v}(t) = r_2\Delta v(t) -\alpha_2v(t) + \gamma_2 u(t)v^2(t) + h(t),\quad u(0) = u_0,\;v(0) = v_0, \end{equation*} where $r_1,r_2,\gamma_1,\gamma_2>0$, $\alpha_1,\alpha_2 \ge 0$ and $g,h$ are time depending mappings specified later.

For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column subset selection.

Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

We establish a theoretical framework of the particle relaxation method for uniform particle generation of Smoothed Particle Hydrodynamics. We achieve this by reformulating the particle relaxation as an optimization problem. The objective function is an integral difference between discrete particle-based and smoothed-analytical volume fractions. The analysis demonstrates that the particle relaxation method in the domain interior is essentially equivalent to employing a gradient descent approach to solve this optimization problem, and we can extend such an equivalence to the bounded domain by introducing a proper boundary term. Additionally, each periodic particle distribution has a spatially uniform particle volume, denoted as characteristic volume. The relaxed particle distribution has the largest characteristic volume, and the kernel cut-off radius determines this volume. This insight enables us to control the relaxed particle distribution by selecting the target kernel cut-off radius for a given kernel function.

This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.

北京阿比特科技有限公司