亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Damped wave equations have been used in many real-world fields. In this paper, we study a low-rank solution of the strongly damped wave equation with the damping term, visco-elastic damping term and mass term. Firstly, a second-order finite difference method is employed for spatial discretization. Then, we receive a second-order matrix differential system. Next, we transform it into an equivalent first-order matrix differential system, and split the transformed system into three subproblems. Applying a Strang splitting to these subproblems and combining a dynamical low-rank approach, we obtain a low-rank algorithm. Numerical experiments are reported to demonstrate that the proposed low-rank algorithm is robust and accurate, and has second-order convergence rate in time.

相關內容

The formation of shear shock waves in the brain has been proposed as one of the plausible explanations for deep intracranial injuries. In fact, such singular solutions emerge naturally in soft viscoelastic tissues under dynamic loading conditions. To improve our understanding of the mechanical processes at hand, the development of dedicated computational models is needed. The present study concerns three-dimensional numerical models of incompressible viscoelastic solids whose motion is analysed by means of shock-capturing finite volume methods. More specifically, we focus on the use of the artificial compressibility method, a technique that has been frequently employed in computational fluid dynamics. The material behaviour is deduced from the Fung--Simo quasi-linear viscoelasiticity theory (QLV) where the elastic response is of Yeoh type. We analyse the accuracy of the method and demonstrate its applicability for the study of nonlinear wave propagation in soft solids. The numerical results cover accuracy tests, shock formation and wave diffraction.

Permutation pattern-avoidance is a central concept of both enumerative and extremal combinatorics. In this paper we study the effect of permutation pattern-avoidance on the complexity of optimization problems. In the context of the dynamic optimality conjecture (Sleator, Tarjan, STOC 1983), Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak (FOCS 2015) conjectured that the amortized access cost of an optimal binary search tree (BST) is $O(1)$ whenever the access sequence avoids some fixed pattern. They showed a bound of $2^{\alpha{(n)}^{O(1)}}$, which was recently improved to $2^{\alpha{(n)}(1+o(1))}$ by Chalermsook, Pettie, and Yingchareonthawornchai (2023); here $n$ is the BST size and $\alpha(\cdot)$ the inverse-Ackermann function. In this paper we resolve the conjecture, showing a tight $O(1)$ bound. This indicates a barrier to dynamic optimality: any candidate online BST (e.g., splay trees or greedy trees) must match this optimum, but current analysis techniques only give superconstant bounds. More broadly, we argue that the easiness of pattern-avoiding input is a general phenomenon, not limited to BSTs or even to data structures. To illustrate this, we show that when the input avoids an arbitrary, fixed, a priori unknown pattern, one can efficiently compute a $k$-server solution of $n$ requests from a unit interval, with total cost $n^{O(1/\log k)}$, in contrast to the worst-case $\Theta(n/k)$ bound; and a traveling salesman tour of $n$ points from a unit box, of length $O(\log{n})$, in contrast to the worst-case $\Theta(\sqrt{n})$ bound; similar results hold for the euclidean minimum spanning tree, Steiner tree, and nearest-neighbor graphs. We show both results to be tight. Our techniques build on the Marcus-Tardos proof of the Stanley-Wilf conjecture, and on the recently emerging concept of twin-width; we believe our techniques to be more generally applicable.

A spatial second-order scheme for the nonlinear radiative transfer equations is introduced in this paper. The discretization scheme is based on the filtered spherical harmonics ($FP_N$) method for the angular variable and the unified gas kinetic scheme (UGKS) framework for the spatial and temporal variables respectively. In order to keep the scheme positive and second-order accuracy, firstly, we use the implicit Monte Carlo linearization method [6] in the construction of the UGKS numerical boundary fluxes. Then, by carefully analyzing the constructed second-order fluxes involved in the macro-micro decomposition, which is induced by the $FP_N$ angular discretization, we establish the sufficient conditions that guarantee the positivity of the radiative energy density and material temperature. Finally, we employ linear scaling limiters for the angular variable in the $P_N$ reconstruction and for the spatial variable in the piecewise linear slopes reconstruction respectively, which are shown to be realizable and reasonable to enforce the sufficient conditions holding. Thus, the desired scheme, called the $PPFP_N$-based UGKS, is obtained. Furthermore, in the regime $\epsilon\ll 1$ and the regime $\epsilon=O(1)$, a simplified spatial second-order scheme, called the $PPFP_N$-based SUGKS, is presented, which possesses all the properties of the non-simplified one. Inheriting the merit of UGKS, the proposed schemes are asymptotic preserving. By employing the $FP_N$ method for the angular variable, the proposed schemes are almost free of ray effects. To our best knowledge, this is the first time that spatial second-order, positive, asymptotic preserving and almost free of ray effects schemes are constructed for the nonlinear radiative transfer equations without operator splitting. Various numerical experiments are included to validate the properties of the proposed schemes.

This paper presents a novel boundary integral equation (BIE) formulation for the two-dimensional time-harmonic water-waves problem. It utilizes a complex-scaled Laplace's free-space Green's function, resulting in a BIE posed on the infinite boundaries of the domain. The perfectly matched layer (PML) coordinate stretching that is used to render propagating waves exponentially decaying, allows for the effective truncation and discretization of the BIE unbounded domain. We show through a variety of numerical examples that, despite the logarithmic growth of the complex-scaled Laplace's free-space Green's function, the truncation errors are exponentially small with respect to the truncation length. Our formulation uses only simple function evaluations (e.g. complex logarithms and square roots), hence avoiding the need to compute the involved water-wave Green's function. Finally, we show that the proposed approach can also be used to find complex resonances through a \emph{linear} eigenvalue problem since the Green's function is frequency-independent.

This paper proposes a strategy to solve the problems of the conventional s-version of finite element method (SFEM) fundamentally. Because SFEM can reasonably model an analytical domain by superimposing meshes with different spatial resolutions, it has intrinsic advantages of local high accuracy, low computation time, and simple meshing procedure. However, it has disadvantages such as accuracy of numerical integration and matrix singularity. Although several additional techniques have been proposed to mitigate these limitations, they are computationally expensive or ad-hoc, and detract from its strengths. To solve these issues, we propose a novel strategy called B-spline based SFEM. To improve the accuracy of numerical integration, we employed cubic B-spline basis functions with $C^2$-continuity across element boundaries as the global basis functions. To avoid matrix singularity, we applied different basis functions to different meshes. Specifically, we employed the Lagrange basis functions as local basis functions. The numerical results indicate that using the proposed method, numerical integration can be calculated with sufficient accuracy without any additional techniques used in conventional SFEM. Furthermore, the proposed method avoids matrix singularity and is superior to conventional methods in terms of convergence for solving linear equations. Therefore, the proposed method has the potential to reduce computation time while maintaining a comparable accuracy to conventional SFEM.

Acceleration of gradient-based optimization methods is an issue of significant practical and theoretical interest, particularly in machine learning applications. Most research has focused on optimization over Euclidean spaces, but given the need to optimize over spaces of probability measures in many machine learning problems, it is of interest to investigate accelerated gradient methods in this context too. To this end, we introduce a Hamiltonian-flow approach that is analogous to moment-based approaches in Euclidean space. We demonstrate that algorithms based on this approach can achieve convergence rates of arbitrarily high order. Numerical examples illustrate our claim.

In this paper, we present a deep surrogate model for learning the Green's function associated with the reaction-diffusion operator in rectangular domain. The U-Net architecture is utilized to effectively capture the mapping from source to solution of the target partial differential equations (PDEs). To enable efficient training of the model without relying on labeled data, we propose a novel loss function that draws inspiration from traditional numerical methods used for solving PDEs. Furthermore, a hard encoding mechanism is employed to ensure that the predicted Green's function is perfectly matched with the boundary conditions. Based on the learned Green's function from the trained deep surrogate model, a fast solver is developed to solve the corresponding PDEs with different sources and boundary conditions. Various numerical examples are also provided to demonstrate the effectiveness of the proposed model.

In this paper, we introduce a novel class of graphical models for representing time lag specific causal relationships and independencies of multivariate time series with unobserved confounders. We completely characterize these graphs and show that they constitute proper subsets of the currently employed model classes. As we show, from the novel graphs one can thus draw stronger causal inferences -- without additional assumptions. We further introduce a graphical representation of Markov equivalence classes of the novel graphs. This graphical representation contains more causal knowledge than what current state-of-the-art causal discovery algorithms learn.

In this paper, we consider the variable-order time fractional mobile/immobile diffusion (TF-MID) equation in two-dimensional spatial domain, where the fractional order $\alpha(t)$ satisfies $0<\alpha_{*}\leq \alpha(t)\leq \alpha^{*}<1$. We combine the quadratic spline collocation (QSC) method and the $L1^+$ formula to propose a QSC-$L1^+$ scheme. It can be proved that, the QSC-$L1^+$ scheme is unconditionally stable and convergent with $\mathcal{O}(\tau^{\min{\{3-\alpha^*-\alpha(0),2\}}} + \Delta x^{2}+\Delta y^{2})$, where $\tau$, $\Delta x$ and $\Delta y$ are the temporal and spatial step sizes, respectively. With some proper assumptions on $\alpha(t)$, the QSC-$L1^+$ scheme has second temporal convergence order even on the uniform mesh, without any restrictions on the solution of the equation. We further construct a novel alternating direction implicit (ADI) framework to develop an ADI-QSC-$L1^+$ scheme, which has the same unconditionally stability and convergence orders. In addition, a fast implementation for the ADI-QSC-$L1^+$ scheme based on the exponential-sum-approximation (ESA) technique is proposed. Moreover, we also introduce the optimal QSC method to improve the spatial convergence to fourth-order. Numerical experiments are attached to support the theoretical analysis, and to demonstrate the effectiveness of the proposed schemes.

We present a priori error estimates for a multirate time-stepping scheme for coupled differential equations. The discretization is based on Galerkin methods in time using two different time meshes for two parts of the problem. We aim at surface coupled multiphysics problems like two-phase flows. Special focus is on the handling of the interface coupling to guarantee a coercive formulation as key to optimal order error estimates. In a sequence of increasing complexity, we begin with the coupling of two ordinary differential equations, coupled heat conduction equation, and finally a coupled Stokes problem. For this we show optimal multi-rate estimates in velocity and a suboptimal result in pressure. The a priori estimates prove that the multirate method decouples the two subproblems exactly. This is the basis for adaptive methods which can choose optimal lattices for the respective subproblems.

北京阿比特科技有限公司