In this paper, we consider the variable-order time fractional mobile/immobile diffusion (TF-MID) equation in two-dimensional spatial domain, where the fractional order $\alpha(t)$ satisfies $0<\alpha_{*}\leq \alpha(t)\leq \alpha^{*}<1$. We combine the quadratic spline collocation (QSC) method and the $L1^+$ formula to propose a QSC-$L1^+$ scheme. It can be proved that, the QSC-$L1^+$ scheme is unconditionally stable and convergent with $\mathcal{O}(\tau^{\min{\{3-\alpha^*-\alpha(0),2\}}} + \Delta x^{2}+\Delta y^{2})$, where $\tau$, $\Delta x$ and $\Delta y$ are the temporal and spatial step sizes, respectively. With some proper assumptions on $\alpha(t)$, the QSC-$L1^+$ scheme has second temporal convergence order even on the uniform mesh, without any restrictions on the solution of the equation. We further construct a novel alternating direction implicit (ADI) framework to develop an ADI-QSC-$L1^+$ scheme, which has the same unconditionally stability and convergence orders. In addition, a fast implementation for the ADI-QSC-$L1^+$ scheme based on the exponential-sum-approximation (ESA) technique is proposed. Moreover, we also introduce the optimal QSC method to improve the spatial convergence to fourth-order. Numerical experiments are attached to support the theoretical analysis, and to demonstrate the effectiveness of the proposed schemes.
In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation. The shifted Laplacian multigrid method is a common preconditioning approach for the discretized acoustic Helmholtz equation. In some cases, like geophysical seismic imaging, one needs to consider the elastic Helmholtz equation, which is harder to solve: it is three times larger and contains a nullity-rich grad-div term. These properties make the solution of the equation more difficult for multigrid solvers. The key idea in this work is combining the shifted Laplacian with approaches for linear elasticity. We provide local Fourier analysis and numerical evidence that the convergence rate of our method is independent of the Poisson's ratio. Moreover, to better handle the problem size, we complement our multigrid method with the domain decomposition approach, which works in synergy with the local nature of the shifted Laplacian, so we enjoy the advantages of both methods without sacrificing performance. We demonstrate the efficiency of our solver on 2D and 3D problems in heterogeneous media.
We prove a tight parallel repetition theorem for $3$-message computationally-secure quantum interactive protocols between an efficient challenger and an efficient adversary. We also prove under plausible assumptions that the security of $4$-message computationally secure protocols does not generally decrease under parallel repetition. These mirror the classical results of Bellare, Impagliazzo, and Naor [BIN97]. Finally, we prove that all quantum argument systems can be generically compiled to an equivalent $3$-message argument system, mirroring the transformation for quantum proof systems [KW00, KKMV07]. As immediate applications, we show how to derive hardness amplification theorems for quantum bit commitment schemes (answering a question of Yan [Yan22]), EFI pairs (answering a question of Brakerski, Canetti, and Qian [BCQ23]), public-key quantum money schemes (answering a question of Aaronson and Christiano [AC13]), and quantum zero-knowledge argument systems. We also derive an XOR lemma [Yao82] for quantum predicates as a corollary.
We offer an alternative proof, using the Stein-Chen method, of Bollob\'{a}s' theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.
In this study, we present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptical equations. We did not impose a shape-regularity mesh condition for the analysis. Therefore, anisotropic meshes can be used. The main contributions of this study include providing new proof of the consistency term. This enabled us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart--Thomas and Morley finite element spaces. Our results show optimal convergence rates and imply that the modified Morley FEM may be effective for errors.
Quantum networks crucially rely on the availability of high-quality entangled pairs of qubits, known as entangled links, distributed across distant nodes. Maintaining the quality of these links is a challenging task due to the presence of time-dependent noise, also known as decoherence. Entanglement purification protocols offer a solution by converting multiple low-quality entangled states into a smaller number of higher-quality ones. In this work, we introduce a framework to analyse the performance of entanglement buffering setups that combine entanglement consumption, decoherence, and entanglement purification. We propose two key metrics: the availability, which is the steady-state probability that an entangled link is present, and the average consumed fidelity, which quantifies the steady-state quality of consumed links. We then investigate a two-node system, where each node possesses two quantum memories: one for long-term entanglement storage, and another for entanglement generation. We model this setup as a continuous-time stochastic process and derive analytical expressions for the performance metrics. Our findings unveil a trade-off between the availability and the average consumed fidelity. We also bound these performance metrics for a buffering system that employs the well-known bilocal Clifford purification protocols. Importantly, our analysis demonstrates that, in the presence of noise, consistently purifying the buffered entanglement increases the average consumed fidelity, even when some buffered entanglement is discarded due to purification failures.
We propose Tied-LoRA, a simple paradigm utilizes weight tying and selective training to further increase parameter efficiency of the Low-rank adaptation (LoRA) method. Our investigations include all feasible combinations parameter training/freezing in conjunction with weight tying to identify the optimal balance between performance and the number of trainable parameters. Through experiments covering a variety of tasks and two base language models, we provide analysis revealing trade-offs between efficiency and performance. Our experiments uncovered a particular Tied-LoRA configuration that stands out by demonstrating comparable performance across several tasks while employing only 13~\% percent of parameters utilized by the standard LoRA method.
In this paper, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in the case of large Lam\'e parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification, poroelastic channel flow simulation, and test the robustness of block-diagonal preconditioners with respect to model parameters.
Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our decomposition is compatible with the projector-splitting integrator, and can therefore access second-order accuracy in time via a Strang splitting scheme. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as a second-order accurate integrator which exactly conserves charge and energy. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.
Generalized linear models (GLMs) are popular for data-analysis in almost all quantitative sciences, but the choice of likelihood family and link function is often difficult. This motivates the search for likelihoods and links that minimize the impact of potential misspecification. We perform a large-scale simulation study on double-bounded and lower-bounded response data where we systematically vary both true and assumed likelihoods and links. In contrast to previous studies, we also study posterior calibration and uncertainty metrics in addition to point-estimate accuracy. Our results indicate that certain likelihoods and links can be remarkably robust to misspecification, performing almost on par with their respective true counterparts. Additionally, normal likelihood models with identity link (i.e., linear regression) often achieve calibration comparable to the more structurally faithful alternatives, at least in the studied scenarios. On the basis of our findings, we provide practical suggestions for robust likelihood and link choices in GLMs.
The main result of this paper is an edge-coloured version of Tutte's $f$-factor theorem. We give a necessary and sufficient condition for an edge-coloured graph $G^c$ to have a properly coloured $f$-factor. We state and prove our result in terms of an auxiliary graph $G_f^c$ which has a 1-factor if and only if $G^c$ has a properly coloured $f$-factor; this is analogous to the "short proof" of the $f$-factor theorem given by Tutte in 1954. An alternative statement, analogous to the original $f$-factor theorem, is also given. We show that our theorem generalises the $f$-factor theorem; that is, the former implies the latter. We consider other properties of edge-coloured graphs, and show that similar results are unlikely for $f$-factors with rainbow components and distance-$d$-coloured $f$-factors, even when $d=2$ and the number of colours used is asymptotically minimal.