亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our decomposition is compatible with the projector-splitting integrator, and can therefore access second-order accuracy in time via a Strang splitting scheme. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as a second-order accurate integrator which exactly conserves charge and energy. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜(za)志。 Publisher:Elsevier。 SIT:

Dynamic crack branching in unsaturated porous media holds significant relevance in various fields, including geotechnical engineering, geosciences, and petroleum engineering. This article presents a numerical investigation into dynamic crack branching in unsaturated porous media using a recently developed coupled micro-periporomechanics paradigm. This paradigm extends the periporomechanics model by incorporating the micro-rotation of the solid skeleton. Within this framework, each material point is equipped with three degrees of freedom: displacement, micro-rotation, and fluid pressure. Consistent with the Cosserat continuum theory, a length scale associated with the micro-rotation of material points is inherently integrated into the model. This study encompasses several key aspects: (1) Validation of the coupled micro-periporomechanics paradigm for effectively modeling crack branching in deformable porous media, (2) Examination of the transition from a single branch to multiple branches in porous media under drained conditions, (3) Simulation of single crack branching in unsaturated porous media under dynamic loading conditions, and (4) Investigation of multiple crack branching in unsaturated porous media under dynamic loading conditions. The numerical results obtained in this study are systematically analyzed to elucidate the factors that influence dynamic crack branching in porous media subjected to dynamic loading. Furthermore, the comprehensive numerical findings underscore the efficacy and robustness of the coupled micro-periporomechanics paradigm in accurately modeling dynamic crack branching in variably saturated porous media.

A general theory of efficient estimation for ergodic diffusion processes sampled at high frequency with an infinite time horizon is presented. High frequency sampling is common in many applications, with finance as a prominent example. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the previously proposed estimators for diffusion processes. Easily checked conditions ensuring that an estimating function is an approximate martingale are derived, and general conditions ensuring consistency and asymptotic normality of estimators are given. Most importantly, simple conditions are given that ensure rate optimality and efficiency. Rate optimal estimators of parameters in the diffusion coefficient converge faster than estimators of drift coefficient parameters because they take advantage of the information in the quadratic variation. The conditions facilitate the choice among the multitude of estimators that have been proposed for diffusion models. Optimal martingale estimating functions in the sense of Godambe and Heyde and their high frequency approximations are, under weak conditions, shown to satisfy the conditions for rate optimality and efficiency. This provides a natural feasible method of constructing explicit rate optimal and efficient estimating functions by solving a linear equation.

Confounding remains one of the major challenges to causal inference with observational data. This problem is paramount in medicine, where we would like to answer causal questions from large observational datasets like electronic health records (EHRs) and administrative claims. Modern medical data typically contain tens of thousands of covariates. Such a large set carries hope that many of the confounders are directly measured, and further hope that others are indirectly measured through their correlation with measured covariates. How can we exploit these large sets of covariates for causal inference? To help answer this question, this paper examines the performance of the large-scale propensity score (LSPS) approach on causal analysis of medical data. We demonstrate that LSPS may adjust for indirectly measured confounders by including tens of thousands of covariates that may be correlated with them. We present conditions under which LSPS removes bias due to indirectly measured confounders, and we show that LSPS may avoid bias when inadvertently adjusting for variables (like colliders) that otherwise can induce bias. We demonstrate the performance of LSPS with both simulated medical data and real medical data.

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.

Two-sample spiked model is an important issue in multivariate statistical inference. This paper focuses on testing the number of spikes in a high-dimensional generalized two-sample spiked model, which is free of Gaussian population assumption and the diagonal or block-wise diagonal restriction of population covariance matrix, and the spiked eigenvalues are not necessary required to be bounded. In order to determine the number of spikes, we first propose a general test, which relies on the partial linear spectral statistics. We establish its asymptotic normality under the null hypothesis. Then we apply the conclusion to two statistical problem, variable selection in large-dimensional linear regression and change point detection when change points and additive outliers exist simultaneously. Simulations and empirical analysis are conducted to illustrate the good performance of our methods.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.

We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $ (or $\sigma = 1$). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.

By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.

Matrices with low-rank structure are ubiquitous in scientific computing. Choosing an appropriate rank is a key step in many computational algorithms that exploit low-rank structure. However, estimating the rank has been done largely in an ad-hoc fashion in large-scale settings. In this work we develop a randomized algorithm for estimating the numerical rank of a (numerically low-rank) matrix. The algorithm is based on sketching the matrix with random matrices from both left and right; the key fact is that with high probability, the sketches preserve the orders of magnitude of the leading singular values. We prove a result on the accuracy of the sketched singular values and show that gaps in the spectrum are detected. For an $m\times n$ $(m\geq n)$ matrix of numerical rank $r$, the algorithm runs with complexity $O(mn\log n+r^3)$, or less for structured matrices. The steps in the algorithm are required as a part of many low-rank algorithms, so the additional work required to estimate the rank can be even smaller in practice. Numerical experiments illustrate the speed and robustness of our rank estimator.

The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems.

北京阿比特科技有限公司