We present a novel approach based on sparse Gaussian processes (SGPs) to address the sensor placement problem for monitoring spatially (or spatiotemporally) correlated phenomena such as temperature and precipitation. Existing Gaussian process (GP) based sensor placement approaches use GPs with known kernel function parameters to model a phenomenon and subsequently optimize the sensor locations in a discretized representation of the environment. In our approach, we fit an SGP with known kernel function parameters to randomly sampled unlabeled locations in the environment and show that the learned inducing points of the SGP inherently solve the sensor placement problem in continuous spaces. Using SGPs avoids discretizing the environment and reduces the computation cost from cubic to linear complexity. When restricted to a candidate set of sensor placement locations, we can use greedy sequential selection algorithms on the SGP's optimization bound to find good solutions. We also present an approach to efficiently map our continuous space solutions to discrete solution spaces using the assignment problem, which gives us discrete sensor placements optimized in unison. Moreover, we generalize our approach to model sensors with non-point field-of-view and integrated observations by leveraging the inherent properties of GPs and SGPs. Our experimental results on three real-world datasets show that our approaches generate solution placements that result in reconstruction quality that is consistently on par or better than the prior state-of-the-art approach while being significantly faster. Our computationally efficient approaches will enable both large-scale sensor placement, and fast sensor placement for informative path planning problems.
Video anomaly detection (VAD) is an important but challenging task in computer vision. The main challenge rises due to the rarity of training samples to model all anomaly cases. Hence, semi-supervised anomaly detection methods have gotten more attention, since they focus on modeling normals and they detect anomalies by measuring the deviations from normal patterns. Despite impressive advances of these methods in modeling normal motion and appearance, long-term motion modeling has not been effectively explored so far. Inspired by the abilities of the future frame prediction proxy-task, we introduce the task of future video prediction from a single frame, as a novel proxy-task for video anomaly detection. This proxy-task alleviates the challenges of previous methods in learning longer motion patterns. Moreover, we replace the initial and future raw frames with their corresponding semantic segmentation map, which not only makes the method aware of object class but also makes the prediction task less complex for the model. Extensive experiments on the benchmark datasets (ShanghaiTech, UCSD-Ped1, and UCSD-Ped2) show the effectiveness of the method and the superiority of its performance compared to SOTA prediction-based VAD methods.
We present a simple yet novel parameterized form of linear mapping to achieves remarkable network compression performance: a pseudo SVD called Ternary SVD (TSVD). Unlike vanilla SVD, TSVD limits the $U$ and $V$ matrices in SVD to ternary matrices form in $\{\pm 1, 0\}$. This means that instead of using the expensive multiplication instructions, TSVD only requires addition instructions when computing $U(\cdot)$ and $V(\cdot)$. We provide direct and training transition algorithms for TSVD like Post Training Quantization and Quantization Aware Training respectively. Additionally, we analyze the convergence of the direct transition algorithms in theory. In experiments, we demonstrate that TSVD can achieve state-of-the-art network compression performance in various types of networks and tasks, including current baseline models such as ConvNext, Swim, BERT, and large language model like OPT.
We present an evaluation of text simplification (TS) in Spanish for a production system, by means of two corpora focused in both complex-sentence and complex-word identification. We compare the most prevalent Spanish-specific readability scores with neural networks, and show that the latter are consistently better at predicting user preferences regarding TS. As part of our analysis, we find that multilingual models underperform against equivalent Spanish-only models on the same task, yet all models focus too often on spurious statistical features, such as sentence length. We release the corpora in our evaluation to the broader community with the hopes of pushing forward the state-of-the-art in Spanish natural language processing.
Text injection for automatic speech recognition (ASR), wherein unpaired text-only data is used to supplement paired audio-text data, has shown promising improvements for word error rate. This study examines the use of text injection for auxiliary tasks, which are the non-ASR tasks often performed by an E2E model. In this work, we use joint end-to-end and internal language model training (JEIT) as our text injection algorithm to train an ASR model which performs two auxiliary tasks. The first is capitalization, which is a de-normalization task. The second is turn-taking prediction, which attempts to identify whether a user has completed their conversation turn in a digital assistant interaction. We show results demonstrating that our text injection method boosts capitalization performance for long-tail data, and improves turn-taking detection recall.
A/B testing is a common approach used in industry to facilitate innovation through the introduction of new features or the modification of existing software. Traditionally, A/B tests are conducted sequentially, with each experiment targeting the entire population of the corresponding application. This approach can be time-consuming and costly, particularly when the experiments are not relevant to the entire population. To tackle these problems, we introduce a new self-adaptive approach called AutoPABS, short for Automated Pipelines of A/B tests using Self-adaptation, that (1) automates the execution of pipelines of A/B tests, and (2) supports a split of the population in the pipeline to divide the population into multiple A/B tests according to user-based criteria, leveraging machine learning. We started the evaluation with a small survey to probe the appraisal of the notation and infrastructure of AutoPABS. Then we performed a series of tests to measure the gains obtained by applying a population split in an automated A/B testing pipeline, using an extension of the SEAByTE artifact. The survey results show that the participants express the usefulness of automating A/B testing pipelines and population split. The tests show that automatically executing pipelines of A/B tests with a population split accelerates the identification of statistically significant results of the parallel executed experiments of A/B tests compared to a traditional approach that performs the experiments sequentially.
ChatGPT can improve Software Engineering (SE) research practices by offering efficient, accessible information analysis and synthesis based on natural language interactions. However, ChatGPT could bring ethical challenges, encompassing plagiarism, privacy, data security, and the risk of generating biased or potentially detrimental data. This research aims to fill the given gap by elaborating on the key elements: motivators, demotivators, and ethical principles of using ChatGPT in SE research. To achieve this objective, we conducted a literature survey, identified the mentioned elements, and presented their relationships by developing a taxonomy. Further, the identified literature-based elements (motivators, demotivators, and ethical principles) were empirically evaluated by conducting a comprehensive questionnaire-based survey involving SE researchers. Additionally, we employed Interpretive Structure Modeling (ISM) approach to analyze the relationships between the ethical principles of using ChatGPT in SE research and develop a level based decision model. We further conducted a Cross-Impact Matrix Multiplication Applied to Classification (MICMAC) analysis to create a cluster-based decision model. These models aim to help SE researchers devise effective strategies for ethically integrating ChatGPT into SE research by following the identified principles through adopting the motivators and addressing the demotivators. The findings of this study will establish a benchmark for incorporating ChatGPT services in SE research with an emphasis on ethical considerations.
Programming-by-example (PBE) systems aim to alleviate the burden of programming. However, user-specified examples are often ambiguous, leaving multiple programs to satisfy the specification. Consequently, in most prior work, users have had to provide additional examples, particularly negative ones, to further constrain the search over compatible programs. Recent work resolves additional ambiguity by modeling program synthesis tasks as pragmatic communication, showing promising results on a graphics domain using a rudimentary user-study. We adapt pragmatic reasoning to a sub-domain of regular expressions and rigorously study its usability as a means of communication both with and without the ability to provide negative examples. Our user study (N=30) demonstrates that, with a pragmatic synthesizer, end-users can more successfully communicate a target regex using positive examples alone (95%) compared to using a non-pragmatic synthesizer (51%). Further, users can communicate more efficiently (57% fewer examples) with a pragmatic synthesizer compared to a non-pragmatic one.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.