亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Max-Flow Min-Cut theorem is the classical duality result for the Max-Flow problem, which considers flow of a single commodity. We study a multiple commodity generalization of Max-Flow in which flows are composed of real-valued k-vectors through networks with arc capacities formed by regions in \R^k. Given the absence of a clear notion of ordering in the multicommodity case, we define the generalized max flow as the feasible region of all flow values. We define a collection of concepts and operations on flows and cuts in the multicommodity setting. We study the mutual capacity of a set of cuts, defined as the set of flows that can pass through all cuts in the set. We present a method to calculate the mutual capacity of pairs of cuts, and then generalize the same to a method of calculation for arbitrary sets of cuts. We show that the mutual capacity is exactly the set of feasible flows in the network, and hence is equal to the max flow. Furthermore, we present a simple class of the multicommodity max flow problem where computations using this tight duality result could run significantly faster than default brute force computations. We also study more tractable special cases of the multicommodity max flow problem where the objective is to transport a maximum real or integer multiple of a given vector through the network. We devise an augmenting cycle search algorithm that reduces the optimization problem to one with m constraints in at most \R^{(m-n+1)k} space from one that requires mn constraints in \R^{mk} space for a network with n nodes and m edges. We present efficient algorithms that compute eps-approximations to both the ratio and the integer ratio maximum flow problems.

相關內容

The Multiple Traveling Salesman Problem (MTSP) with a single depot is a generalization of the well-known Traveling Salesman Problem (TSP) that involves an additional parameter, namely, the number of salesmen. In the MTSP, several salesmen at the depot need to visit a set of interconnected targets, such that each target is visited precisely once by at most one salesman while minimizing the total length of their tours. An equally important variant of the MTSP, the min-max MTSP, aims to distribute the workload (length of the individual tours) among salesmen by requiring the longest tour of all the salesmen to be as short as possible, i.e., minimizing the maximum tour length among all salesmen. The min-max MTSP appears in real-life applications to ensure a good balance of workloads for the salesmen. It is known in the literature that the min-max MTSP is notoriously difficult to solve to optimality due to the poor lower bounds its linear relaxations provide. In this paper, we formulate two novel parametric variants of the MTSP called the "fair-MTSP". One variant is formulated as a Mixed-Integer Second Order Cone Program (MISOCP), and the other as a Mixed Integer Linear Program (MILP). Both focus on enforcing the workloads for the salesmen to be equitable, i.e., the distribution of tour lengths for the salesmen to be fair while minimizing the total cost of their tours. We present algorithms to solve the two variants of the fair-MTSP to global optimality and computational results on benchmark and real-world test instances that make a case for fair-MTSP as a viable alternative to the min-max MTSP.

The rapid development of musical AI technologies has expanded the creative potential of various musical activities, ranging from music style transformation to music generation. However, little research has investigated how musical AIs can support music therapists, who urgently need new technology support. This study used a mixed method, including semi-structured interviews and a participatory design approach. By collaborating with music therapists, we explored design opportunities for musical AIs in music therapy. We presented the co-design outcomes involving the integration of musical AIs into a music therapy process, which was developed from a theoretical framework rooted in emotion-focused therapy. After that, we concluded the benefits and concerns surrounding music AIs from the perspective of music therapists. Based on our findings, we discussed the opportunities and design implications for applying musical AIs to music therapy. Our work offers valuable insights for developing human-AI collaborative music systems in therapy involving complex procedures and specific requirements.

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at //github.com/EQTPartners/PTEC.

Monte-Carlo Tree Search (MCTS) methods, such as Upper Confidence Bound applied to Trees (UCT), are instrumental to automated planning techniques. However, UCT can be slow to explore an optimal action when it initially appears inferior to other actions. Maximum ENtropy Tree-Search (MENTS) incorporates the maximum entropy principle into an MCTS approach, utilising Boltzmann policies to sample actions, naturally encouraging more exploration. In this paper, we highlight a major limitation of MENTS: optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective. We introduce two algorithms, Boltzmann Tree Search (BTS) and Decaying ENtropy Tree-Search (DENTS), that address these limitations and preserve the benefits of Boltzmann policies, such as allowing actions to be sampled faster by using the Alias method. Our empirical analysis shows that our algorithms show consistent high performance across several benchmark domains, including the game of Go.

Super-Resolution (SR) is a time-hallowed image processing problem that aims to improve the quality of a Low-Resolution (LR) sample up to the standard of its High-Resolution (HR) counterpart. We aim to address this by introducing Super-Resolution Generator (SuRGe), a fully-convolutional Generative Adversarial Network (GAN)-based architecture for SR. We show that distinct convolutional features obtained at increasing depths of a GAN generator can be optimally combined by a set of learnable convex weights to improve the quality of generated SR samples. In the process, we employ the Jensen-Shannon and the Gromov-Wasserstein losses respectively between the SR-HR and LR-SR pairs of distributions to further aid the generator of SuRGe to better exploit the available information in an attempt to improve SR. Moreover, we train the discriminator of SuRGe with the Wasserstein loss with gradient penalty, to primarily prevent mode collapse. The proposed SuRGe, as an end-to-end GAN workflow tailor-made for super-resolution, offers improved performance while maintaining low inference time. The efficacy of SuRGe is substantiated by its superior performance compared to 18 state-of-the-art contenders on 10 benchmark datasets.

Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. Recent work shows promise by decomposing such tasks using a large language model (LLM) into an executable program that invokes specialized vision models. However, generated programs are error-prone: they omit necessary steps, include spurious ones, and are unable to recover when the specialized models give incorrect outputs. Moreover, they require loading multiple models, incurring high latency and computation costs. We propose Visual Program Distillation (VPD), an instruction tuning framework that produces a vision-language model (VLM) capable of solving complex visual tasks with a single forward pass. VPD distills the reasoning ability of LLMs by using them to sample multiple candidate programs, which are then executed and verified to identify a correct one. It translates each correct program into a language description of the reasoning steps, which are then distilled into a VLM. Extensive experiments show that VPD improves the VLM's ability to count, understand spatial relations, and reason compositionally. Our VPD-trained PaLI-X outperforms all prior VLMs, achieving state-of-the-art performance across complex vision tasks, including MMBench, OK-VQA, A-OKVQA, TallyQA, POPE, and Hateful Memes. An evaluation with human annotators also confirms that VPD improves model response factuality and consistency. Finally, experiments on content moderation demonstrate that VPD is also helpful for adaptation to real-world applications with limited data.

In musical compositions that include vocals, lyrics significantly contribute to artistic expression. Consequently, previous studies have introduced the concept of a recommendation system that suggests lyrics similar to a user's favorites or personalized preferences, aiding in the discovery of lyrics among millions of tracks. However, many of these systems do not fully consider human perceptions of lyric similarity, primarily due to limited research in this area. To bridge this gap, we conducted a comparative analysis of computational methods for modeling lyric similarity with human perception. Results indicated that computational models based on similarities between embeddings from pre-trained BERT-based models, the audio from which the lyrics are derived, and phonetic components are indicative of perceptual lyric similarity. This finding underscores the importance of semantic, stylistic, and phonetic similarities in human perception about lyric similarity. We anticipate that our findings will enhance the development of similarity-based lyric recommendation systems by offering pseudo-labels for neural network development and introducing objective evaluation metrics.

With the increasing use of multicore platforms to realize mixed-criticality systems, understanding the underlying shared resources, such as the memory hierarchy shared among cores, and achieving isolation between co-executing tasks running on the same platform with different criticality levels becomes relevant. In addition to safety considerations, a malicious entity can exploit shared resources to create timing attacks on critical applications. In this paper, we focus on understanding the shared DRAM dual in-line memory module and created a timing attack, that we named the "bank & row conflict bomb", to target a victim task in a multicore platform. We also created a "navigate" algorithm to understand how victim requests are managed by the Memory Controller and provide valuable inputs for designing the bank & row conflict bomb. We performed experimental tests on a 2nd Gen Intel Xeon Processor with an 8GB DDR4-2666 DRAM module to show that such an attack can produce a significant increase in the execution time of the victim task by about 150%, motivating the need for proper countermeasures to help ensure the safety and security of critical applications.

The interest in single-chip mmWave Radar is driven by their compact form factor, cost-effectiveness, and robustness under harsh environmental conditions. Despite its promising attributes, the principal limitation of mmWave radar lies in its capacity for autonomous yaw rate estimation. Conventional solutions have often resorted to integrating inertial measurement unit (IMU) or deploying multiple radar units to circumvent this shortcoming. This paper introduces an innovative methodology for two-dimensional ego-motion estimation, focusing on yaw rate deduction, utilizing solely mmWave radar sensors. By applying a weighted Iterated Closest Point (ICP) algorithm to register processed points derived from heatmap data, our method facilitates 2D ego-motion estimation devoid of prior information. Through experimental validation, we verified the effectiveness and promise of our technique for ego-motion estimation using exclusively radar data.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司