Vertex Integrity is a graph measure which sits squarely between two more well-studied notions, namely vertex cover and tree-depth, and that has recently gained attention as a structural graph parameter. In this paper we investigate the algorithmic trade-offs involved with this parameter from the point of view of algorithmic meta-theorems for First-Order (FO) and Monadic Second Order (MSO) logic. Our positive results are the following: (i) given a graph $G$ of vertex integrity $k$ and an FO formula $\phi$ with $q$ quantifiers, deciding if $G$ satisfies $\phi$ can be done in time $2^{O(k^2q+q\log q)}+n^{O(1)}$; (ii) for MSO formulas with $q$ quantifiers, the same can be done in time $2^{2^{O(k^2+kq)}}+n^{O(1)}$. Both results are obtained using kernelization arguments, which pre-process the input to sizes $2^{O(k^2)}q$ and $2^{O(k^2+kq)}$ respectively. The complexities of our meta-theorems are significantly better than the corresponding meta-theorems for tree-depth, which involve towers of exponentials. However, they are worse than the roughly $2^{O(kq)}$ and $2^{2^{O(k+q)}}$ complexities known for corresponding meta-theorems for vertex cover. To explain this deterioration we present two formula constructions which lead to fine-grained complexity lower bounds and establish that the dependence of our meta-theorems on $k$ is best possible. More precisely, we show that it is not possible to decide FO formulas with $q$ quantifiers in time $2^{o(k^2q)}$, and that there exists a constant-size MSO formula which cannot be decided in time $2^{2^{o(k^2)}}$, both under the ETH. Hence, the quadratic blow-up in the dependence on $k$ is unavoidable and vertex integrity has a complexity for FO and MSO logic which is truly intermediate between vertex cover and tree-depth.
We propose a new representation of $k$-partite, $k$-uniform hypergraphs, that is, a hypergraph with a partition of vertices into $k$ parts such that each hyperedge contains exactly one vertex of each type; we call them $k$-hypergraphs for short. Given positive integers $\ell, d$, and $k$ with $\ell\leq d-1$ and $k={d\choose\ell}$, any finite set $P$ of points in $\mathbb{R}^d$ represents a $k$-hypergraph $G_P$ as follows. Each point in $P$ is covered by $k$ many axis-aligned affine $\ell$-dimensional subspaces of $\mathbb{R}^d$, which we call $\ell$-subspaces for brevity and which form the vertex set of $G_P$. We interpret each point in $P$ as a hyperedge of $G_P$ that contains each of the covering $\ell$-subspaces as a vertex. The class of \emph{$(d,\ell)$-hypergraphs} is the class of $k$-hypergraphs that can be represented in this way. The resulting classes of hypergraphs are fairly rich: Every $k$-hypergraph is a $(k,k-1)$-hypergraph. On the other hand, $(d,\ell)$-hypergraphs form a proper subclass of the class of all $k$-hypergraphs for $\ell<d-1$. In this paper we give a natural structural characterization of $(d,\ell)$-hypergraphs based on vertex cuts. This characterization leads to a poly\-nomial-time recognition algorithm that decides for a given $k$-hypergraph whether or not it is a $(d,\ell)$-hypergraph and that computes a representation if existing. We assume that the dimension $d$ is constant and that the partitioning of the vertex set is prescribed.
We are interested in creating statistical methods to provide informative summaries of random fields through the geometry of their excursion sets. To this end, we introduce an estimator for the length of the perimeter of excursion sets of random fields on $\mathbb{R}^2$ observed over regular square tilings. The proposed estimator acts on the empirically accessible binary digital images of the excursion regions and computes the length of a piecewise linear approximation of the excursion boundary. The estimator is shown to be consistent as the pixel size decreases, without the need of any normalization constant, and with neither assumption of Gaussianity nor isotropy imposed on the underlying random field. In this general framework, even when the domain grows to cover $\mathbb{R}^2$, the estimation error is shown to be of smaller order than the side length of the domain. For affine, strongly mixing random fields, this translates to a multivariate Central Limit Theorem for our estimator when multiple levels are considered simultaneously. Finally, we conduct several numerical studies to investigate statistical properties of the proposed estimator in the finite-sample data setting.
Part-based approaches for fine-grained recognition do not show the expected performance gain over global methods, although explicitly focusing on small details that are relevant for distinguishing highly similar classes. We assume that part-based methods suffer from a missing representation of local features, which is invariant to the order of parts and can handle a varying number of visible parts appropriately. The order of parts is artificial and often only given by ground-truth annotations, whereas viewpoint variations and occlusions result in not observable parts. Therefore, we propose integrating a Fisher vector encoding of part features into convolutional neural networks. The parameters for this encoding are estimated by an online EM algorithm jointly with those of the neural network and are more precise than the estimates of previous works. Our approach improves state-of-the-art accuracies for three bird species classification datasets.
The Entity Set Expansion (ESE) task aims to expand a handful of seed entities with new entities belonging to the same semantic class. Conventional ESE methods are based on mono-modality (i.e., literal modality), which struggle to deal with complex entities in the real world such as: (1) Negative entities with fine-grained semantic differences. (2) Synonymous entities. (3) Polysemous entities. (4) Long-tailed entities. These challenges prompt us to propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities. Intuitively, the benefits of multi-modal information for ESE are threefold: (1) Different modalities can provide complementary information. (2) Multi-modal information provides a unified signal via common visual properties for the same semantic class or entity. (3) Multi-modal information offers robust alignment signal for synonymous entities. To assess the performance of model in MESE and facilitate further research, we constructed the MESED dataset which is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration. A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks. The extensive experiments and analyses on MESED demonstrate the high quality of the dataset and the effectiveness of our MultiExpan, as well as pointing the direction for future research.
We establish a formal correspondence between resource calculi an appropriate linear multicategories. We consider the cases of (symmetric) representable, symmetric closed and autonomous multicategories. For all these structures, we prove that morphisms of the corresponding free constructions can be presented by means of typed resource terms, up to a reduction relation and a structural equivalence. Thanks to the linearity of the calculi, we can prove strong normalization of the reduction by combinatorial methods, defining appropriate decreasing measures. From this, we achieve a general coherence result: morphisms that live in the free multicategorical structures are the same whenever the normal forms of the associated terms are equal. As further application, we obtain syntactic proofs of Mac Lane's coherence theorems for (symmetric) monoidal categories.
The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a $2$-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a simple rounding algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair $(G, S)$, consisting of a graph with an odd cycle transversal. If $S$ is a stable set, we prove a tight approximation ratio of $1 + 1/\rho$, where $2\rho -1$ denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph $\tilde{G} := G /S$ and satisfies $\rho \in [2,\infty]$. If $S$ is an arbitrary set, we prove a tight approximation ratio of $\left(1+1/\rho \right) (1 - \alpha) + 2 \alpha$, where $\alpha \in [0,1]$ is a natural parameter measuring the quality of the set $S$. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph $\tilde{G}$. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals and show optimality of the analysis.
Recent studies on face forgery detection have shown satisfactory performance for methods involved in training datasets, but are not ideal enough for unknown domains. This motivates many works to improve the generalization, but forgery-irrelevant information, such as image background and identity, still exists in different domain features and causes unexpected clustering, limiting the generalization. In this paper, we propose a controllable guide-space (GS) method to enhance the discrimination of different forgery domains, so as to increase the forgery relevance of features and thereby improve the generalization. The well-designed guide-space can simultaneously achieve both the proper separation of forgery domains and the large distance between real-forgery domains in an explicit and controllable manner. Moreover, for better discrimination, we use a decoupling module to weaken the interference of forgery-irrelevant correlations between domains. Furthermore, we make adjustments to the decision boundary manifold according to the clustering degree of the same domain features within the neighborhood. Extensive experiments in multiple in-domain and cross-domain settings confirm that our method can achieve state-of-the-art generalization.
The level-$k$ $\ell_1$-Fourier weight of a Boolean function refers to the sum of absolute values of its level-$k$ Fourier coefficients. Fourier growth refers to the growth of these weights as $k$ grows. It has been extensively studied for various computational models, and bounds on the Fourier growth, even for the first few levels, have proven useful in learning theory, circuit lower bounds, pseudorandomness, and quantum-classical separations. We investigate the Fourier growth of certain functions that naturally arise from communication protocols for XOR functions (partial functions evaluated on the bitwise XOR of the inputs to Alice and Bob). If a protocol $\mathcal C$ computes an XOR function, then $\mathcal C(x,y)$ is a function of the parity $x\oplus y$. This motivates us to analyze the XOR-fiber of $\mathcal C$, defined as $h(z):=\mathbb E_{x,y}[\mathcal C(x,y)|x\oplus y=z]$. We present improved Fourier growth bounds for the XOR-fibers of protocols that communicate $d$ bits. For the first level, we show a tight $O(\sqrt d)$ bound and obtain a new coin theorem, as well as an alternative proof for the tight randomized communication lower bound for Gap-Hamming. For the second level, we show an $d^{3/2}\cdot\mathrm{polylog}(n)$ bound, which improves the previous $O(d^2)$ bound by Girish, Raz, and Tal (ITCS 2021) and implies a polynomial improvement on the randomized communication lower bound for the XOR-lift of Forrelation, extending its quantum-classical gap. Our analysis is based on a new way of adaptively partitioning a relatively large set in Gaussian space to control its moments in all directions. We achieve this via martingale arguments and allowing protocols to transmit real values. We also show a connection between Fourier growth and lifting theorems with constant-sized gadgets as a potential approach to prove optimal bounds for the second level and beyond.
Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.