亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Entity Set Expansion (ESE) task aims to expand a handful of seed entities with new entities belonging to the same semantic class. Conventional ESE methods are based on mono-modality (i.e., literal modality), which struggle to deal with complex entities in the real world such as: (1) Negative entities with fine-grained semantic differences. (2) Synonymous entities. (3) Polysemous entities. (4) Long-tailed entities. These challenges prompt us to propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities. Intuitively, the benefits of multi-modal information for ESE are threefold: (1) Different modalities can provide complementary information. (2) Multi-modal information provides a unified signal via common visual properties for the same semantic class or entity. (3) Multi-modal information offers robust alignment signal for synonymous entities. To assess the performance of model in MESE and facilitate further research, we constructed the MESED dataset which is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration. A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks. The extensive experiments and analyses on MESED demonstrate the high quality of the dataset and the effectiveness of our MultiExpan, as well as pointing the direction for future research.

相關內容

Nowadays, while the demand for capacity continues to expand, the blossoming of Internet of Everything is bringing in a paradigm shift to new perceptions of communication networks, ushering in a plethora of totally unique services. To provide these services, Virtual Network Functions (VNFs) must be established and reachable by end-users, which will generate and consume massive volumes of data that must be processed locally for service responsiveness and scalability. For this to be realized, a solid cloud-network Integrated infrastructure is a necessity, and since cloud and network domains would be diverse in terms of characteristics but limited in terms of capability, communication and computing resources should be jointly controlled to unleash its full potential. Although several innovative methods have been proposed to allocate the resources, most of them either ignored network resources or relaxed the network as a simple graph, which are not applicable to Beyond 5G because of its dynamism and stringent QoS requirements. This paper fills in the gap by studying the joint problem of communication and computing resource allocation, dubbed CCRA, including VNF placement and assignment, traffic prioritization, and path selection considering capacity constraints as well as link and queuing delays, with the goal of minimizing overall cost. We formulate the problem as a non-linear programming model, and propose two approaches, dubbed B\&B-CCRA and WF-CCRA respectively, based on the Branch \& Bound and Water-Filling algorithms. Numerical simulations show that B\&B-CCRA can solve the problem optimally, whereas WF-CCRA can provide near-optimal solutions in significantly less time.

Large Language Models (LLMs) have emerged as powerful tools capable of accomplishing a broad spectrum of tasks. Their abilities span numerous areas, and one area where they have made a significant impact is in the domain of code generation. In this context, we view LLMs as mutation and crossover tools. Meanwhile, Quality-Diversity (QD) algorithms are known to discover diverse and robust solutions. By merging the code-generating abilities of LLMs with the diversity and robustness of QD solutions, we introduce LLMatic, a Neural Architecture Search (NAS) algorithm. While LLMs struggle to conduct NAS directly through prompts, LLMatic uses a procedural approach, leveraging QD for prompts and network architecture to create diverse and highly performant networks. We test LLMatic on the CIFAR-10 image classification benchmark, demonstrating that it can produce competitive networks with just $2,000$ searches, even without prior knowledge of the benchmark domain or exposure to any previous top-performing models for the benchmark.

Argument mining is to analyze argument structure and extract important argument information from unstructured text. An argument mining system can help people automatically gain causal and logical information behind the text. As argumentative corpus gradually increases, like more people begin to argue and debate on social media, argument mining from them is becoming increasingly critical. However, argument mining is still a big challenge in natural language tasks due to its difficulty, and relative techniques are not mature. For example, research on non-tree argument mining needs to be done more. Most works just focus on extracting tree structure argument information. Moreover, current methods cannot accurately describe and capture argument relations and do not predict their types. In this paper, we propose a novel neural model called AutoAM to solve these problems. We first introduce the argument component attention mechanism in our model. It can capture the relevant information between argument components, so our model can better perform argument mining. Our model is a universal end-to-end framework, which can analyze argument structure without constraints like tree structure and complete three subtasks of argument mining in one model. The experiment results show that our model outperforms the existing works on several metrics in two public datasets.

Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen LLaMA language model, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from MusicCaps, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.

Nonlinear Model Predictive Control (NMPC) is a state-of-the-art approach for locomotion and manipulation which leverages trajectory optimization at each control step. While the performance of this approach is computationally bounded, implementations of direct trajectory optimization that use iterative methods to solve the underlying moderately-large and sparse linear systems, are a natural fit for parallel hardware acceleration. In this work, we introduce MPCGPU, a GPU-accelerated, real-time NMPC solver that leverages an accelerated preconditioned conjugate gradient (PCG) linear system solver at its core. We show that MPCGPU increases the scalability and real-time performance of NMPC, solving larger problems, at faster rates. In particular, for tracking tasks using the Kuka IIWA manipulator, MPCGPU is able to scale to kilohertz control rates with trajectories as long as 512 knot points. This is driven by a custom PCG solver which outperforms state-of-the-art, CPU-based, linear system solvers by at least 10x for a majority of solves and 3.6x on average.

Knowledge Graphs (KGs) often have two characteristics: heterogeneous graph structure and text-rich entity/relation information. Text-based KG embeddings can represent entities by encoding descriptions with pre-trained language models, but no open-sourced library is specifically designed for KGs with PLMs at present. In this paper, we present LambdaKG, a library for KGE that equips with many pre-trained language models (e.g., BERT, BART, T5, GPT-3), and supports various tasks (e.g., knowledge graph completion, question answering, recommendation, and knowledge probing). LambdaKG is publicly open-sourced at //github.com/zjunlp/PromptKG/tree/main/lambdaKG, with a demo video at //deepke.zjukg.cn/lambdakg.mp4 and long-term maintenance.

In computation pathology, the pyramid structure of gigapixel Whole Slide Images (WSIs) has recently been studied for capturing various information from individual cell interactions to tissue microenvironments. This hierarchical structure is believed to be beneficial for cancer diagnosis and prognosis tasks. However, most previous hierarchical WSI analysis works (1) only characterize local or global correlations within the WSI pyramids and (2) use only unidirectional interaction between different resolutions, leading to an incomplete picture of WSI pyramids. To this end, this paper presents a novel Hierarchical Interaction Graph-Transformer (i.e., HIGT) for WSI analysis. With Graph Neural Network and Transformer as the building commons, HIGT can learn both short-range local information and long-range global representation of the WSI pyramids. Considering that the information from different resolutions is complementary and can benefit each other during the learning process, we further design a novel Bidirectional Interaction block to establish communication between different levels within the WSI pyramids. Finally, we aggregate both coarse-grained and fine-grained features learned from different levels together for slide-level prediction. We evaluate our methods on two public WSI datasets from TCGA projects, i.e., kidney carcinoma (KICA) and esophageal carcinoma (ESCA). Experimental results show that our HIGT outperforms both hierarchical and non-hierarchical state-of-the-art methods on both tumor subtyping and staging tasks.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司