亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Argument mining is to analyze argument structure and extract important argument information from unstructured text. An argument mining system can help people automatically gain causal and logical information behind the text. As argumentative corpus gradually increases, like more people begin to argue and debate on social media, argument mining from them is becoming increasingly critical. However, argument mining is still a big challenge in natural language tasks due to its difficulty, and relative techniques are not mature. For example, research on non-tree argument mining needs to be done more. Most works just focus on extracting tree structure argument information. Moreover, current methods cannot accurately describe and capture argument relations and do not predict their types. In this paper, we propose a novel neural model called AutoAM to solve these problems. We first introduce the argument component attention mechanism in our model. It can capture the relevant information between argument components, so our model can better perform argument mining. Our model is a universal end-to-end framework, which can analyze argument structure without constraints like tree structure and complete three subtasks of argument mining in one model. The experiment results show that our model outperforms the existing works on several metrics in two public datasets.

相關內容

Rain generation algorithms have the potential to improve the generalization of deraining methods and scene understanding in rainy conditions. However, in practice, they produce artifacts and distortions and struggle to control the amount of rain generated due to a lack of proper constraints. In this paper, we propose an unpaired image-to-image translation framework for generating realistic rainy images. We first introduce a Triangular Probability Similarity (TPS) constraint to guide the generated images toward clear and rainy images in the discriminator manifold, thereby minimizing artifacts and distortions during rain generation. Unlike conventional contrastive learning approaches, which indiscriminately push negative samples away from the anchors, we propose a Semantic Noise Contrastive Estimation (SeNCE) strategy and reassess the pushing force of negative samples based on the semantic similarity between the clear and the rainy images and the feature similarity between the anchor and the negative samples. Experiments demonstrate realistic rain generation with minimal artifacts and distortions, which benefits image deraining and object detection in rain. Furthermore, the method can be used to generate realistic snowy and night images, underscoring its potential for broader applicability. Code is available at //github.com/ShenZheng2000/TPSeNCE.

The artist similarity quest has become a crucial subject in social and scientific contexts. Modern research solutions facilitate music discovery according to user tastes. However, defining similarity among artists may involve several aspects, even related to a subjective perspective, and it often affects a recommendation. This paper presents GATSY, a recommendation system built upon graph attention networks and driven by a clusterized embedding of artists. The proposed framework takes advantage of a graph topology of the input data to achieve outstanding performance results without relying heavily on hand-crafted features. This flexibility allows us to introduce fictitious artists in a music dataset, create bridges to previously unrelated artists, and get recommendations conditioned by possibly heterogeneous sources. Experimental results prove the effectiveness of the proposed method with respect to state-of-the-art solutions.

Text classification aims to effectively categorize documents into pre-defined categories. Traditional methods for text classification often rely on large amounts of manually annotated training data, making the process time-consuming and labor-intensive. To address this issue, recent studies have focused on weakly-supervised and extremely weakly-supervised settings, which require minimal or no human annotation, respectively. In previous methods of weakly supervised text classification, pseudo-training data is generated by assigning pseudo-labels to documents based on their alignment (e.g., keyword matching) with specific classes. However, these methods ignore the importance of incorporating the explanations of the generated pseudo-labels, or saliency of individual words, as additional guidance during the text classification training process. To address this limitation, we propose XAI-CLASS, a novel explanation-enhanced extremely weakly-supervised text classification method that incorporates word saliency prediction as an auxiliary task. XAI-CLASS begins by employing a multi-round question-answering process to generate pseudo-training data that promotes the mutual enhancement of class labels and corresponding explanation word generation. This pseudo-training data is then used to train a multi-task framework that simultaneously learns both text classification and word saliency prediction. Extensive experiments on several weakly-supervised text classification datasets show that XAI-CLASS outperforms other weakly-supervised text classification methods significantly. Moreover, experiments demonstrate that XAI-CLASS enhances both model performance and explainability.

Large language models (LLMs) have achieved remarkable progress in solving various natural language processing tasks due to emergent reasoning abilities. However, LLMs have inherent limitations as they are incapable of accessing up-to-date information (stored on the Web or in task-specific knowledge bases), using external tools, and performing precise mathematical and logical reasoning. In this paper, we present Chameleon, an AI system that mitigates these limitations by augmenting LLMs with plug-and-play modules for compositional reasoning. Chameleon synthesizes programs by composing various tools (e.g., LLMs, off-the-shelf vision models, web search engines, Python functions, and heuristic-based modules) for accomplishing complex reasoning tasks. At the heart of Chameleon is an LLM-based planner that assembles a sequence of tools to execute to generate the final response. We showcase the effectiveness of Chameleon on two multi-modal knowledge-intensive reasoning tasks: ScienceQA and TabMWP. Chameleon, powered by GPT-4, achieves an 86.54% overall accuracy on ScienceQA, improving the best published few-shot result by 11.37%. On TabMWP, GPT-4-powered Chameleon improves the accuracy by 17.0%, lifting the state of the art to 98.78%. Our analysis also shows that the GPT-4-powered planner exhibits more consistent and rational tool selection via inferring potential constraints from instructions, compared to a ChatGPT-powered planner. The project is available at //chameleon-llm.github.io.

Widely-used LiDAR-based 3D object detectors often neglect fundamental geometric information readily available from the object proposals in their confidence estimation. This is mostly due to architectural design choices, which were often adopted from the 2D image domain, where geometric context is rarely available. In 3D, however, considering the object properties and its surroundings in a holistic way is important to distinguish between true and false positive detections, e.g. occluded pedestrians in a group. To address this, we present GACE, an intuitive and highly efficient method to improve the confidence estimation of a given black-box 3D object detector. We aggregate geometric cues of detections and their spatial relationships, which enables us to properly assess their plausibility and consequently, improve the confidence estimation. This leads to consistent performance gains over a variety of state-of-the-art detectors. Across all evaluated detectors, GACE proves to be especially beneficial for the vulnerable road user classes, i.e. pedestrians and cyclists.

Text classification is essential for organizing unstructured text. Traditional methods rely on human annotations or, more recently, a set of class seed words for supervision, which can be costly, particularly for specialized or emerging domains. To address this, using class surface names alone as extremely weak supervision has been proposed. However, existing approaches treat different levels of text granularity (documents, sentences, or words) independently, disregarding inter-granularity class disagreements and the context identifiable exclusively through joint extraction. In order to tackle these issues, we introduce MEGClass, an extremely weakly-supervised text classification method that leverages Mutually-Enhancing Text Granularities. MEGClass utilizes coarse- and fine-grained context signals obtained by jointly considering a document's most class-indicative words and sentences. This approach enables the learning of a contextualized document representation that captures the most discriminative class indicators. By preserving the heterogeneity of potential classes, MEGClass can select the most informative class-indicative documents as iterative feedback to enhance the initial word-based class representations and ultimately fine-tune a pre-trained text classifier. Extensive experiments on seven benchmark datasets demonstrate that MEGClass outperforms other weakly and extremely weakly supervised methods.

This paper provides statistical sample complexity bounds for score-matching and its applications in causal discovery. We demonstrate that accurate estimation of the score function is achievable by training a standard deep ReLU neural network using stochastic gradient descent. We establish bounds on the error rate of recovering causal relationships using the score-matching-based causal discovery method of Rolland et al. [2022], assuming a sufficiently good estimation of the score function. Finally, we analyze the upper bound of score-matching estimation within the score-based generative modeling, which has been applied for causal discovery but is also of independent interest within the domain of generative models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

北京阿比特科技有限公司