Autonomous vehicles are the culmination of advances in many areas such as sensor technologies, artificial intelligence (AI), networking, and more. This paper will introduce the reader to the technologies that build autonomous vehicles. It will focus on open-source tools and libraries for autonomous vehicle development, making it cheaper and easier for developers and researchers to participate in the field. The topics covered are as follows. First, we will discuss the sensors used in autonomous vehicles and summarize their performance in different environments, costs, and unique features. Then we will cover Simultaneous Localization and Mapping (SLAM) and algorithms for each modality. Third, we will review popular open-source driving simulators, a cost-effective way to train machine learning models and test vehicle software performance. We will then highlight embedded operating systems and the security and development considerations when choosing one. After that, we will discuss Vehicle-to-Vehicle (V2V) and Internet-of-Vehicle (IoV) communication, which are areas that fuse networking technologies with autonomous vehicles to extend their functionality. We will then review the five levels of vehicle automation, commercial and open-source Advanced Driving Assistance Systems, and their features. Finally, we will touch on the major manufacturing and software companies involved in the field, their investments, and their partnerships. These topics will give the reader an understanding of the industry, its technologies, active research, and the tools available for developers to build autonomous vehicles.
Various types of vehicle automation is increasingly used in a variety of environments including road vehicles such as cars or automated shuttles, confined areas such as mines or harbours, or in agriculture and forestry. In many use cases, the benefits are greater if several automated vehicles (AVs) cooperate to aid each other reach their goals more efficiently, or collaborate to complete a common task. Taxonomies and definitions create a common framework that helps researchers and practitioners advance the field. However, most existing work focus on road vehicles. In this paper, we review and extend taxonomies and definitions to encompass individually acting as well as cooperative and collaborative AVs for both on-road and off-road use cases. In particular, we introduce classes of collaborative vehicles not defined in existing literature, and define levels of automation suitable for vehicles where automation applies to additional functions in addition to the driving task.
In this paper, we consider scheduling problems that arise in connected and autonomous vehicle systems. For four variants of such problems, mathematical models and solution algorithms are presented. In particular, three polynomial algorithms and a branch and bound algorithms are developed.
An accurate and robust localization system is crucial for autonomous vehicles (AVs) to enable safe driving in urban scenes. While existing global navigation satellite system (GNSS)-based methods are effective at locating vehicles in open-sky regions, achieving high-accuracy positioning in urban canyons such as lower layers of multi-layer bridges, streets beside tall buildings, tunnels, etc., remains a challenge. In this paper, we investigate the potential of cellular-vehicle-to-everything (C-V2X) wireless communications in improving the localization performance of AVs under GNSS-denied environments. Specifically, we propose the first roadside unit (RSU)-enabled cooperative localization framework, namely CV2X-LOCA, that only uses C-V2X channel state information to achieve lane-level positioning accuracy. CV2X-LOCA consists of four key parts: data processing module, coarse positioning module, environment parameter correcting module, and vehicle trajectory filtering module. These modules jointly handle challenges present in dynamic C-V2X networks. Extensive simulation and field experiments show that CV2X-LOCA achieves state-of-the-art performance for vehicle localization even under noisy conditions with high-speed movement and sparse RSUs coverage environments. The study results also provide insights into future investment decisions for transportation agencies regarding deploying RSUs cost-effectively.
By interacting, synchronizing, and cooperating with its physical counterpart in real time, digital twin is promised to promote an intelligent, predictive, and optimized modern city. Via interconnecting massive physical entities and their virtual twins with inter-twin and intra-twin communications, the Internet of digital twins (IoDT) enables free data exchange, dynamic mission cooperation, and efficient information aggregation for composite insights across vast physical/virtual entities. However, as IoDT incorporates various cutting-edge technologies to spawn the new ecology, severe known/unknown security flaws and privacy invasions of IoDT hinders its wide deployment. Besides, the intrinsic characteristics of IoDT such as \emph{decentralized structure}, \emph{information-centric routing} and \emph{semantic communications} entail critical challenges for security service provisioning in IoDT. To this end, this paper presents an in-depth review of the IoDT with respect to system architecture, enabling technologies, and security/privacy issues. Specifically, we first explore a novel distributed IoDT architecture with cyber-physical interactions and discuss its key characteristics and communication modes. Afterward, we investigate the taxonomy of security and privacy threats in IoDT, discuss the key research challenges, and review the state-of-the-art defense approaches. Finally, we point out the new trends and open research directions related to IoDT.
Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.