亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An accurate and robust localization system is crucial for autonomous vehicles (AVs) to enable safe driving in urban scenes. While existing global navigation satellite system (GNSS)-based methods are effective at locating vehicles in open-sky regions, achieving high-accuracy positioning in urban canyons such as lower layers of multi-layer bridges, streets beside tall buildings, tunnels, etc., remains a challenge. In this paper, we investigate the potential of cellular-vehicle-to-everything (C-V2X) wireless communications in improving the localization performance of AVs under GNSS-denied environments. Specifically, we propose the first roadside unit (RSU)-enabled cooperative localization framework, namely CV2X-LOCA, that only uses C-V2X channel state information to achieve lane-level positioning accuracy. CV2X-LOCA consists of four key parts: data processing module, coarse positioning module, environment parameter correcting module, and vehicle trajectory filtering module. These modules jointly handle challenges present in dynamic C-V2X networks. Extensive simulation and field experiments show that CV2X-LOCA achieves state-of-the-art performance for vehicle localization even under noisy conditions with high-speed movement and sparse RSUs coverage environments. The study results also provide insights into future investment decisions for transportation agencies regarding deploying RSUs cost-effectively.

相關內容

In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.

In this paper, we investigate the problem of UAV-aided user localization in wireless networks. Unlike the existing works, we do not assume perfect knowledge of the UAV location, hence we not only need to localize the users but also to track the UAV location. To do so, we utilize the time-of-arrival along with received signal strength radio measurements collected from users using a UAV. A simultaneous localization and mapping (SLAM) framework building on the Expectation-Maximization-based least-squares method is proposed to classify measurements into line-of-sight or non-line-of-sight categories and learn the radio channel, and at the same, localize the users and track the UAV. This framework also allows us to exploit other types of measurements such as the rough estimate of the UAV location available from GPS, and the UAV velocity measured by an inertial measurement unit (IMU) on-board, to achieve better localization accuracy. Moreover, the trajectory of the UAV is optimized which brings considerable improvement to the localization performance. The simulations show the out-performance of the developed algorithm when compared to other approaches.

Intelligent transportation and autonomous mobility solutions rely on cooperative awareness developed by exchanging proximity and mobility data among road users. To maintain pervasive awareness on roads, all vehicles and vulnerable road users must be identified, either cooperatively, where road users equipped with wireless capabilities of Vehicle-to-Everything (V2X) radios can communicate with one another, or passively, where users without V2X capabilities are detected by means other than V2X communications. This necessitates the establishment of a communications channel among all V2X-enabled road users, regardless of whether their underlying V2X technology is compatible or not. At the same time, for cooperative awareness to realize its full potential, non-V2X-enabled road users must also be communicated with where possible or, leastwise, be identified passively. However, the question is whether current V2X technologies can provide such a welcoming heterogeneous road environment for all parties, including varying V2X-enabled and non-V2X-enabled road users? This paper investigates the roles of a propositional concept named Augmenting V2X Roadside Unit (A-RSU) in enabling heterogeneous vehicular networks to support and benefit from pervasive cooperative awareness. To this end, this paper explores the efficacy of A-RSU in establishing pervasive cooperative awareness and investigates the capabilities of the available communication networks using secondary data. The primary findings suggest that A-RSU is a viable solution for accommodating all types of road users regardless of their V2X capabilities.

With the standardization and commercialization completed at an unforeseen pace for the 5th generation (5G) wireless networks, researchers, engineers and executives from the academia and industry have turned their attention to new candidate technologies that can support the next generation wireless networks enabling more advanced capabilities in sophisticated scenarios. Explicitly, the 6th generation (6G) terrestrial wireless network aims to providing seamless connectivity not only to users but also to machine type devices for the next decade and beyond. This paper describes the progresses moving towards 6G, which is officially termed as ``international mobile telecommunications (IMT) for 2030 and beyond'' in the International Telecommunication Union Radiocommunication Sector (ITU-R). Specifically, the usage scenarios, their representative capabilities and the supporting technologies are discussed, and the future opportunities and challenges are highlighted.

Collaboration in multi-agent autonomous systems is critical to increase performance while ensuring safety. However, due to heterogeneity of their features in, e.g., perception qualities, some autonomous systems have to be considered more trustworthy than others when contributing to collaboratively build a common environmental model, especially under uncertainty. In this paper, we introduce the idea of increasing the reliability of autonomous systems by relying on collective intelligence. We borrow concepts from social epistemology to exploit individual characteristics of autonomous systems, and define and formalize at design rules for collective reasoning to achieve collaboratively increased safety, trustworthiness and good decision making.

Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms which can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground which in turn increases productivity and further strengthens their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.

北京阿比特科技有限公司