亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial agents have traditionally been trained to maximize reward, which may incentivize power-seeking and deception, analogous to how next-token prediction in language models (LMs) may incentivize toxicity. So do agents naturally learn to be Machiavellian? And how do we measure these behaviors in general-purpose models such as GPT-4? Towards answering these questions, we introduce MACHIAVELLI, a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios that center on social decision-making. Scenario labeling is automated with LMs, which are more performant than human annotators. We mathematize dozens of harmful behaviors and use our annotations to evaluate agents' tendencies to be power-seeking, cause disutility, and commit ethical violations. We observe some tension between maximizing reward and behaving ethically. To improve this trade-off, we investigate LM-based methods to steer agents' towards less harmful behaviors. Our results show that agents can both act competently and morally, so concrete progress can currently be made in machine ethics--designing agents that are Pareto improvements in both safety and capabilities.

相關內容

With the explosive growth of textual information, summarization systems have become increasingly important. This work aims to concisely indicate the current state of the art in abstractive text summarization. As part of this, we outline the current paradigm shifts towards pre-trained encoder-decoder models and large autoregressive language models. Additionally, we delve further into the challenges of evaluating summarization systems and the potential of instruction-tuned models for zero-shot summarization. Finally, we provide a brief overview of how summarization systems are currently being integrated into commercial applications.

This research article analyses and demonstrates the hidden implications for fairness of seemingly neutral data coupled with powerful technology, such as machine learning (ML), using Open Banking as an example. Open Banking has ignited a revolution in financial services, opening new opportunities for customer acquisition, management, retention, and risk assessment. However, the granularity of transaction data holds potential for harm where unnoticed proxies for sensitive and prohibited characteristics may lead to indirect discrimination. Against this backdrop, we investigate the dimensions of financial vulnerability (FV), a global concern resulting from COVID-19 and rising inflation. Specifically, we look to understand the behavioral elements leading up to FV and its impact on at-risk, disadvantaged groups through the lens of fair interpretation. Using a unique dataset from a UK FinTech lender, we demonstrate the power of fine-grained transaction data while simultaneously cautioning its safe usage. Three ML classifiers are compared in predicting the likelihood of FV, and groups exhibiting different magnitudes and forms of FV are identified via clustering to highlight the effects of feature combination. Our results indicate that engineered features of financial behavior can be predictive of omitted personal information, particularly sensitive or protected characteristics, shedding light on the hidden dangers of Open Banking data. We discuss the implications and conclude fairness via unawareness is ineffective in this new technological environment.

The advent of deep learning has brought a revolutionary transformation to image denoising techniques. However, the persistent challenge of acquiring noise-clean pairs for supervised methods in real-world scenarios remains formidable, necessitating the exploration of more practical self-supervised image denoising. This paper focuses on self-supervised image denoising methods that offer effective solutions to address this challenge. Our comprehensive review thoroughly analyzes the latest advancements in self-supervised image denoising approaches, categorizing them into three distinct classes: General methods, Blind Spot Network (BSN)-based methods, and Transformer-based methods. For each class, we provide a concise theoretical analysis along with their practical applications. To assess the effectiveness of these methods, we present both quantitative and qualitative experimental results on various datasets, utilizing classical algorithms as benchmarks. Additionally, we critically discuss the current limitations of these methods and propose promising directions for future research. By offering a detailed overview of recent developments in self-supervised image denoising, this review serves as an invaluable resource for researchers and practitioners in the field, facilitating a deeper understanding of this emerging domain and inspiring further advancements.

As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes, indicating its potential to act as a universal interface between the cyber and the physical worlds. Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance. However, the inherent challenge of explaining AI components introduces uncertainty and unreliability to these AI-enabled robotics systems, necessitating a reliable development platform for system design and performance assessment. As a foundational step towards building reliable AI-enabled robotics systems, we propose a public industrial benchmark for robotics manipulation in this paper. It leverages NVIDIA Omniverse Isaac Sim as the simulation platform, encompassing eight representative manipulation tasks and multiple AI software controllers. An extensive evaluation is conducted to analyze the performance of AI controllers in solving robotics manipulation tasks, enabling a thorough understanding of their effectiveness. To further demonstrate the applicability of our benchmark, we develop a falsification framework that is compatible with physical simulators and OpenAI Gym environments. This framework bridges the gap between traditional testing methods and modern physics engine-based simulations. The effectiveness of different optimization methods in falsifying AI-enabled robotics manipulation with physical simulators is examined via a falsification test. Our work not only establishes a foundation for the design and development of AI-enabled robotics systems but also provides practical experience and guidance to practitioners in this field, promoting further research in this critical academic and industrial domain.

This study investigates the robustness of image classifiers to text-guided corruptions. We utilize diffusion models to edit images to different domains. Unlike other works that use synthetic or hand-picked data for benchmarking, we use diffusion models as they are generative models capable of learning to edit images while preserving their semantic content. Thus, the corruptions will be more realistic and the comparison will be more informative. Also, there is no need for manual labeling and we can create large-scale benchmarks with less effort. We define a prompt hierarchy based on the original ImageNet hierarchy to apply edits in different domains. As well as introducing a new benchmark we try to investigate the robustness of different vision models. The results of this study demonstrate that the performance of image classifiers decreases significantly in different language-based corruptions and edit domains. We also observe that convolutional models are more robust than transformer architectures. Additionally, we see that common data augmentation techniques can improve the performance on both the original data and the edited images. The findings of this research can help improve the design of image classifiers and contribute to the development of more robust machine learning systems. The code for generating the benchmark is available at //github.com/ckoorosh/RobuText.

Physical Human-Human Interaction (pHHI) involves the use of multiple sensory modalities. Studies of communication through spoken utterances and gestures are well established, but communication through force signals is not well understood. In this paper, we focus on investigating the mechanisms employed by humans during the negotiation through force signals, and how the robot can communicate task goals, comprehend human intent, and take the lead as needed. To achieve this, we formulate a task that requires active force communication and propose a taxonomy that extends existing literature. Also, we conducted a study to observe how humans behave during collaborative manipulation tasks. An important contribution of this work is the novel features based on force-kinematic signals that demonstrate predictive power to recognize symbolic human intent. Further, we show the feasibility of developing a real-time intent classifier based on the novel features and speculate the role it plays in high-level robot controllers for physical Human-Robot Interaction (pHRI). This work provides important steps to achieve more human-like fluid interaction in physical co-manipulation tasks that are applicable and not limited to humanoid, assistive robots, and human-in-the-loop automation.

In a decentralized machine learning system, data is typically partitioned among multiple devices or nodes, each of which trains a local model using its own data. These local models are then shared and combined to create a global model that can make accurate predictions on new data. In this paper, we start exploring the role of the network topology connecting nodes on the performance of a Machine Learning model trained through direct collaboration between nodes. We investigate how different types of topologies impact the "spreading of knowledge", i.e., the ability of nodes to incorporate in their local model the knowledge derived by learning patterns in data available in other nodes across the networks. Specifically, we highlight the different roles in this process of more or less connected nodes (hubs and leaves), as well as that of macroscopic network properties (primarily, degree distribution and modularity). Among others, we show that, while it is known that even weak connectivity among network components is sufficient for information spread, it may not be sufficient for knowledge spread. More intuitively, we also find that hubs have a more significant role than leaves in spreading knowledge, although this manifests itself not only for heavy-tailed distributions but also when "hubs" have only moderately more connections than leaves. Finally, we show that tightly knit communities severely hinder knowledge spread.

Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models. They comprise a neural ODE and a certified upper bound on the error between the abstract neural network and the concrete dynamical model. So far neural abstractions have exclusively been obtained as neural networks consisting entirely of $ReLU$ activation functions, resulting in neural ODE models that have piecewise affine dynamics, and which can be equivalently interpreted as linear hybrid automata. In this work, we observe that the utility of an abstraction depends on its use: some scenarios might require coarse abstractions that are easier to analyse, whereas others might require more complex, refined abstractions. We therefore consider neural abstractions of alternative shapes, namely either piecewise constant or nonlinear non-polynomial (specifically, obtained via sigmoidal activations). We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics. Empirically, we demonstrate the trade-off that these different neural abstraction templates have vis-a-vis their precision and synthesis time, as well as the time required for their safety verification (done via reachability computation). We improve existing synthesis techniques to enable abstraction of higher-dimensional models, and additionally discuss the abstraction of complex neural ODEs to improve the efficiency of reachability analysis for these models.

This work investigates the potential of Federated Learning (FL) for official statistics and shows how well the performance of FL models can keep up with centralized learning methods. At the same time, its utilization can safeguard the privacy of data holders, thus facilitating access to a broader range of data and ultimately enhancing official statistics. By simulating three different use cases, important insights on the applicability of the technology are gained. The use cases are based on a medical insurance data set, a fine dust pollution data set and a mobile radio coverage data set - all of which are from domains close to official statistics. We provide a detailed analysis of the results, including a comparison of centralized and FL algorithm performances for each simulation. In all three use cases, we were able to train models via FL which reach a performance very close to the centralized model benchmarks. Our key observations and their implications for transferring the simulations into practice are summarized. We arrive at the conclusion that FL has the potential to emerge as a pivotal technology in future use cases of official statistics.

Recent advances in generative AI have brought incredible breakthroughs in several areas, including medical imaging. These generative models have tremendous potential not only to help safely share medical data via synthetic datasets but also to perform an array of diverse applications, such as anomaly detection, image-to-image translation, denoising, and MRI reconstruction. However, due to the complexity of these models, their implementation and reproducibility can be difficult. This complexity can hinder progress, act as a use barrier, and dissuade the comparison of new methods with existing works. In this study, we present MONAI Generative Models, a freely available open-source platform that allows researchers and developers to easily train, evaluate, and deploy generative models and related applications. Our platform reproduces state-of-art studies in a standardised way involving different architectures (such as diffusion models, autoregressive transformers, and GANs), and provides pre-trained models for the community. We have implemented these models in a generalisable fashion, illustrating that their results can be extended to 2D or 3D scenarios, including medical images with different modalities (like CT, MRI, and X-Ray data) and from different anatomical areas. Finally, we adopt a modular and extensible approach, ensuring long-term maintainability and the extension of current applications for future features.

北京阿比特科技有限公司