This work investigates the potential of Federated Learning (FL) for official statistics and shows how well the performance of FL models can keep up with centralized learning methods. At the same time, its utilization can safeguard the privacy of data holders, thus facilitating access to a broader range of data and ultimately enhancing official statistics. By simulating three different use cases, important insights on the applicability of the technology are gained. The use cases are based on a medical insurance data set, a fine dust pollution data set and a mobile radio coverage data set - all of which are from domains close to official statistics. We provide a detailed analysis of the results, including a comparison of centralized and FL algorithm performances for each simulation. In all three use cases, we were able to train models via FL which reach a performance very close to the centralized model benchmarks. Our key observations and their implications for transferring the simulations into practice are summarized. We arrive at the conclusion that FL has the potential to emerge as a pivotal technology in future use cases of official statistics.
Nowadays, the versatile capabilities of Pre-trained Large Language Models (LLMs) have attracted much attention from the industry. However, some vertical domains are more interested in the in-domain capabilities of LLMs. For the Networks domain, we present NetEval, an evaluation set for measuring the comprehensive capabilities of LLMs in Network Operations (NetOps). NetEval is designed for evaluating the commonsense knowledge and inference ability in NetOps in a multi-lingual context. NetEval consists of 5,732 questions about NetOps, covering five different sub-domains of NetOps. With NetEval, we systematically evaluate the NetOps capability of 26 publicly available LLMs. The results show that only GPT-4 can achieve a performance competitive to humans. However, some open models like LLaMA 2 demonstrate significant potential.
Federated training of Graph Neural Networks (GNN) has become popular in recent years due to its ability to perform graph-related tasks under data isolation scenarios while preserving data privacy. However, graph heterogeneity issues in federated GNN systems continue to pose challenges. Existing frameworks address the problem by representing local tasks using different statistics and relating them through a simple aggregation mechanism. However, these approaches suffer from limited efficiency from two aspects: low quality of task-relatedness quantification and inefficacy of exploiting the collaboration structure. To address these issues, we propose FedGKD, a novel federated GNN framework that utilizes a novel client-side graph dataset distillation method to extract task features that better describe task-relatedness, and introduces a novel server-side aggregation mechanism that is aware of the global collaboration structure. We conduct extensive experiments on six real-world datasets of different scales, demonstrating our framework's outperformance.
In early 2021 the United States Capitol in Washington was stormed during a riot and violent attack. A similar storming occurred in Brazil in 2023. Although both attacks were instances in longer sequences of events, these have provided a testimony for many observers who had claimed that online actions, including the propagation of disinformation, have offline consequences. Soon after, a number of papers have been published about the relation between online disinformation and offline violence, among other related relations. Hitherto, the effects upon political protests have been unexplored. This paper thus evaluates such effects with a time series cross-sectional sample of 125 countries in a period between 2000 and 2019. The results are mixed. Based on Bayesian multi-level regression modeling, (i) there indeed is an effect between online disinformation and offline protests, but the effect is partially meditated by political polarization. The results are clearer in a sample of countries belonging to the European Economic Area. With this sample, (ii) offline protest counts increase from online disinformation disseminated by domestic governments, political parties, and politicians as well as by foreign governments. Furthermore, (iii) Internet shutdowns tend to decrease the counts, although, paradoxically, the absence of governmental online monitoring of social media tends to also decrease these. With these results, the paper contributes to the blossoming disinformation research by modeling the impact of disinformation upon offline phenomenon. The contribution is important due to the various policy measures planned or already enacted.
Vision Transformers (ViTs) that leverage self-attention mechanism have shown superior performance on many classical vision tasks compared to convolutional neural networks (CNNs) and gain increasing popularity recently. Existing ViTs works mainly optimize performance and accuracy, but ViTs reliability issues induced by soft errors in large-scale VLSI designs have generally been overlooked. In this work, we mainly study the reliability of ViTs and investigate the vulnerability from different architecture granularities ranging from models, layers, modules, and patches for the first time. The investigation reveals that ViTs with the self-attention mechanism are generally more resilient on linear computing including general matrix-matrix multiplication (GEMM) and full connection (FC) and show a relatively even vulnerability distribution across the patches. ViTs involve more fragile non-linear computing such as softmax and GELU compared to typical CNNs. With the above observations, we propose a lightweight block-wise algorithm-based fault tolerance (LB-ABFT) approach to protect the linear computing implemented with distinct sizes of GEMM and apply a range-based protection scheme to mitigate soft errors in non-linear computing. According to our experiments, the proposed fault-tolerant approaches enhance ViTs accuracy significantly with minor computing overhead in presence of various soft errors.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.