亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nowadays, the versatile capabilities of Pre-trained Large Language Models (LLMs) have attracted much attention from the industry. However, some vertical domains are more interested in the in-domain capabilities of LLMs. For the Networks domain, we present NetEval, an evaluation set for measuring the comprehensive capabilities of LLMs in Network Operations (NetOps). NetEval is designed for evaluating the commonsense knowledge and inference ability in NetOps in a multi-lingual context. NetEval consists of 5,732 questions about NetOps, covering five different sub-domains of NetOps. With NetEval, we systematically evaluate the NetOps capability of 26 publicly available LLMs. The results show that only GPT-4 can achieve a performance competitive to humans. However, some open models like LLaMA 2 demonstrate significant potential.

相關內容

Adopting a two-stage paradigm of pretraining followed by fine-tuning, Pretrained Language Models (PLMs) have achieved substantial advancements in the field of natural language processing. However, in real-world scenarios, data labels are often noisy due to the complex annotation process, making it essential to develop strategies for fine-tuning PLMs with such noisy labels. To this end, we introduce an innovative approach for fine-tuning PLMs using noisy labels, which incorporates the guidance of Large Language Models (LLMs) like ChatGPT. This guidance assists in accurately distinguishing between clean and noisy samples and provides supplementary information beyond the noisy labels, thereby boosting the learning process during fine-tuning PLMs. Extensive experiments on synthetic and real-world noisy datasets further demonstrate the superior advantages of our framework over the state-of-the-art baselines.

Pre-trained Vision-Language Models (VLMs), such as CLIP, have shown enhanced performance across a range of tasks that involve the integration of visual and linguistic modalities. When CLIP is used for depth estimation tasks, the patches, divided from the input images, can be combined with a series of semantic descriptions of the depth information to obtain similarity results. The coarse estimation of depth is then achieved by weighting and summing the depth values, called depth bins, corresponding to the predefined semantic descriptions. The zero-shot approach circumvents the computational and time-intensive nature of traditional fully-supervised depth estimation methods. However, this method, utilizing fixed depth bins, may not effectively generalize as images from different scenes may exhibit distinct depth distributions. To address this challenge, we propose a few-shot-based method which learns to adapt the VLMs for monocular depth estimation to balance training costs and generalization capabilities. Specifically, it assigns different depth bins for different scenes, which can be selected by the model during inference. Additionally, we incorporate learnable prompts to preprocess the input text to convert the easily human-understood text into easily model-understood vectors and further enhance the performance. With only one image per scene for training, our extensive experiment results on the NYU V2 and KITTI dataset demonstrate that our method outperforms the previous state-of-the-art method by up to 10.6\% in terms of MARE.

Continuous monitoring and patient acuity assessments are key aspects of Intensive Care Unit (ICU) practice, but both are limited by time constraints imposed on healthcare providers. Moreover, anticipating clinical trajectories remains imprecise. The objectives of this study are to (1) develop an electronic phenotype of acuity using automated variable retrieval within the electronic health records and (2) describe transitions between acuity states that illustrate the clinical trajectories of ICU patients. We gathered two single-center, longitudinal electronic health record datasets for 51,372 adult ICU patients admitted to the University of Florida Health (UFH) Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acuity status at four-hour intervals for each ICU admission and identify acuity phenotypes using continuous acuity status and k-means clustering approach. 51,073 admissions for 38,749 patients in the UFH GNV dataset and 22,219 admissions for 12,623 patients in the UFH JAX dataset had at least one ICU stay lasting more than four hours. There were three phenotypes: persistently stable, persistently unstable, and transitioning from unstable to stable. For stable patients, approximately 0.7%-1.7% would transition to unstable, 0.02%-0.1% would expire, 1.2%-3.4% would be discharged, and the remaining 96%-97% would remain stable in the ICU every four hours. For unstable patients, approximately 6%-10% would transition to stable, 0.4%-0.5% would expire, and the remaining 89%-93% would remain unstable in the ICU in the next four hours. We developed phenotyping algorithms for patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding escalation of care and patient values.

Explainability techniques are rapidly being developed to improve human-AI decision-making across various cooperative work settings. Consequently, previous research has evaluated how decision-makers collaborate with imperfect AI by investigating appropriate reliance and task performance with the aim of designing more human-centered computer-supported collaborative tools. Several human-centered explainable AI (XAI) techniques have been proposed in hopes of improving decision-makers' collaboration with AI; however, these techniques are grounded in findings from previous studies that primarily focus on the impact of incorrect AI advice. Few studies acknowledge the possibility for the explanations to be incorrect even if the AI advice is correct. Thus, it is crucial to understand how imperfect XAI affects human-AI decision-making. In this work, we contribute a robust, mixed-methods user study with 136 participants to evaluate how incorrect explanations influence humans' decision-making behavior in a bird species identification task taking into account their level of expertise and an explanation's level of assertiveness. Our findings reveal the influence of imperfect XAI and humans' level of expertise on their reliance on AI and human-AI team performance. We also discuss how explanations can deceive decision-makers during human-AI collaboration. Hence, we shed light on the impacts of imperfect XAI in the field of computer-supported cooperative work and provide guidelines for designers of human-AI collaboration systems.

In this work, we study how the performance of a given direction changes with its sampling ratio in Multilingual Neural Machine Translation (MNMT). By training over 200 multilingual models with various model sizes, data sizes, and language directions, we find it interesting that the performance of certain translation direction does not always improve with the increase of its weight in the multi-task optimization objective. Accordingly, scalarization method leads to a multitask trade-off front that deviates from the traditional Pareto front when there exists data imbalance in the training corpus, which poses a great challenge to improve the overall performance of all directions. Based on our observations, we propose the Double Power Law to predict the unique performance trade-off front in MNMT, which is robust across various languages, data adequacy, and the number of tasks. Finally, we formulate the sample ratio selection problem in MNMT as an optimization problem based on the Double Power Law. In our experiments, it achieves better performance than temperature searching and gradient manipulation methods with only 1/5 to 1/2 of the total training budget. We release the code at //github.com/pkunlp-icler/ParetoMNMT for reproduction.

The Multi-Modal Large Language Model (MLLM) refers to an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data. Spatial awareness stands as one of the crucial abilities of MLLM, encompassing diverse skills related to understanding spatial relationships among objects and between objects and the scene area. Industries such as autonomous driving, smart healthcare, robotics, virtual, and augmented reality heavily demand MLLM's spatial awareness capabilities. However, there exists a noticeable gap between the current spatial awareness capabilities of MLLM and the requirements set by human needs. To address this issue, this paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries. Specifically, for a particular multi-modal task, we utilize algorithms for acquiring geometric spatial information and scene graphs to obtain relevant geometric spatial information and scene details of objects involved in the query. Subsequently, based on this information, we direct MLLM to address spatial awareness-related queries posed by the user. Extensive experiments were conducted in benchmarks such as MME, MM-Vet, and other multi-modal large language models. The experimental results thoroughly confirm the efficacy of the proposed method in enhancing the spatial awareness tasks and associated tasks of MLLM.

Multilingual Neural Machine Translation (MNMT) facilitates knowledge sharing but often suffers from poor zero-shot (ZS) translation qualities. While prior work has explored the causes of overall low ZS performance, our work introduces a fresh perspective: the presence of high variations in ZS performance. This suggests that MNMT does not uniformly exhibit poor ZS capability; instead, certain translation directions yield reasonable results. Through systematic experimentation involving 1,560 language directions spanning 40 languages, we identify three key factors contributing to high variations in ZS NMT performance: 1) target side translation capability 2) vocabulary overlap 3) linguistic properties. Our findings highlight that the target side translation quality is the most influential factor, with vocabulary overlap consistently impacting ZS performance. Additionally, linguistic properties, such as language family and writing system, play a role, particularly with smaller models. Furthermore, we suggest that the off-target issue is a symptom of inadequate ZS performance, emphasizing that zero-shot translation challenges extend beyond addressing the off-target problem. We release the data and models serving as a benchmark to study zero-shot for future research at //github.com/Smu-Tan/ZS-NMT-Variations

We propose a causal interpretation of self-attention in the Transformer neural network architecture. We interpret self-attention as a mechanism that estimates a structural equation model for a given input sequence of symbols (tokens). The structural equation model can be interpreted, in turn, as a causal structure over the input symbols under the specific context of the input sequence. Importantly, this interpretation remains valid in the presence of latent confounders. Following this interpretation, we estimate conditional independence relations between input symbols by calculating partial correlations between their corresponding representations in the deepest attention layer. This enables learning the causal structure over an input sequence using existing constraint-based algorithms. In this sense, existing pre-trained Transformers can be utilized for zero-shot causal-discovery. We demonstrate this method by providing causal explanations for the outcomes of Transformers in two tasks: sentiment classification (NLP) and recommendation.

Confidence intervals (CI) for the IPW estimators of the ATT and ATO might not always yield conservative CIs when using the 'robust sandwich variance' estimator. In this manuscript, we identify scenarios where this variance estimator can be employed to derive conservative CIs. Specifically, for the ATT, a conservative CI can be derived when there's a homogeneous treatment effect or the interaction effect surpasses the effect from the covariates alone. For the ATO, conservative CIs can be derived under certain conditions, such as when there are homogeneous treatment effects, when there exists significant treatment-confounder interactions, or when there's a large number of members in the control groups.

Security challenges for Cloud or Fog-based machine learning services pose several concerns. Securing the underlying Cloud or Fog services is essential, as successful attacks against these services, on which machine learning applications rely, can lead to significant impairments of these applications. Because the requirements for AI applications can also be different, we differentiate according to whether they are used in the Cloud or in a Fog Computing network. This then also results in different threats or attack possibilities. For Cloud platforms, the responsibility for security can be divided between different parties. Security deficiencies at a lower level can have a direct impact on the higher level where user data is stored. While responsibilities are simpler for Fog Computing networks, by moving services to the edge of the network, we have to secure them against physical access to the devices. We conclude by outlining specific information security requirements for AI applications.

北京阿比特科技有限公司