Elliptic problems along smooth surfaces embedded in three dimensions occur in thin-membrane mechanics, electromagnetics (harmonic vector fields), and computational geometry. In this work, we present a parametrix-based integral equation method applicable to several forms of variable coefficient surface elliptic problems. Via the use of an approximate Green's function, the surface PDEs are transformed into well-conditioned integral equations. We demonstrate high-order numerical examples of this method applied to problems on general surfaces using a variant of the fast multipole method based on smooth interpolation properties of the kernel. Lastly, we discuss extensions of the method to surfaces with boundaries.
For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column subset selection.
Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.
The fundamental computational issues in Bayesian inverse problems (BIP) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such costs is to replace expensive model simulations with computationally efficient approximations using operator learning, motivated by recent progress in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by adaptively fine-tuning the pre-trained approximate model with train- ing points chosen by a greedy algorithm during the posterior computational process. To validate our approach, we use DeepOnet to construct the surrogate and unscented Kalman inversion (UKI) to approximate the BIP solution, respectively. Furthermore, we present a rigorous convergence guarantee in the linear case using the UKI framework. The approach is tested on a number of benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction-diffusion problem. The numerical results show that our method can significantly reduce computational costs while maintaining inversion accuracy.
We address a prime counting problem across the homology classes of a graph, presenting a graph-theoretical Dirichlet-type analogue of the prime number theorem. The main machinery we have developed and employed is a spectral antisymmetry theorem, revealing that the spectra of the twisted graph adjacency matrices have an antisymmetric distribution over the character group of the graph. Additionally, we derive some trace formulas based on the twisted adjacency matrices as part of our analysis.
The main respiratory muscle, the diaphragm, is an example of a thin structure. We aim to perform detailed numerical simulations of the muscle mechanics based on individual patient data. This requires a representation of the diaphragm geometry extracted from medical image data. We design an adaptive reconstruction method based on a least-squares radial basis function partition of unity method. The method is adapted to thin structures by subdividing the structure rather than the surrounding space, and by introducing an anisotropic scaling of local subproblems. The resulting representation is an infinitely smooth level set function, which is stabilized such that there are no spurious zero level sets. We show reconstruction results for 2D cross sections of the diaphragm geometry as well as for the full 3D geometry. We also show solutions to basic PDE test problems in the reconstructed geometries.
A module of a graph G is a set of vertices that have the same set of neighbours outside. Modules of a graphs form a so-called partitive family and thereby can be represented by a unique tree MD(G), called the modular decomposition tree. Motivated by the central role of modules in numerous algorithmic graph theory questions, the problem of efficiently computing MD(G) has been investigated since the early 70's. To date the best algorithms run in linear time but are all rather complicated. By combining previous algorithmic paradigms developed for the problem, we are able to present a simpler linear-time that relies on very simple data-structures, namely slice decomposition and sequences of rooted ordered trees.
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parameter-free preconditioning techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. While the former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-matrix multiplications, which are highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby enhancing their performance with little or no damage to their effectiveness.
A detailed numerical study of solutions to the Serre-Green-Naghdi (SGN) equations in 2D with vanishing curl of the velocity field is presented. The transverse stability of line solitary waves, 1D solitary waves being exact solutions of the 2D equations independent of the second variable, is established numerically. The study of localized initial data as well as crossing 1D solitary waves does not give an indication of existence of stable structures in SGN solutions localized in two spatial dimensions. For the numerical experiments, an approach based on a Fourier spectral method with a Krylov subspace technique is applied.
The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, in order to guarantee well-posedness, are well known. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.