亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential recommendation aims to predict the subsequent items matching user preference based on her/his historical interactions. With the development of Large Language Models (LLMs), there is growing interest in exploring the potential of LLMs for sequential recommendation by framing it as a language modeling task. Prior works represent items in the textual prompts using either ID indexing or text indexing and feed the prompts into LLMs, but falling short of either encapsulating comprehensive world knowledge or exhibiting sufficient sequential understanding. To harness the complementary strengths of traditional recommenders (which encode user behavioral knowledge) and LLMs (which possess world knowledge about items), we propose LLaRA -- a Large Language and Recommendation Assistant framework. Specifically, LLaRA represents items in LLM's input prompts using a novel hybrid approach that integrates ID-based item embeddings from traditional recommenders with textual item features. Viewing the ``sequential behavior of the user'' as a new modality in recommendation, we employ an adapter to bridge the modality gap between ID embeddings of the traditional recommenders and the input space of LLMs. Furthermore, instead of directly exposing the hybrid prompt to LLMs, we apply a curriculum learning approach to gradually ramp up training complexity. We first warm up the LLM with text-only prompting, which aligns more naturally with the LLM's language modeling capabilities. Thereafter, we progressively transition to hybrid prompting, training the adapter to incorporate behavioral knowledge from the traditional sequential recommender into the LLM. Extensive experiments demonstrate the efficacy of LLaRA framework. Our code and data are available at //github.com/ljy0ustc/LLaRA .

相關內容

大(da)語(yu)(yu)言(yan)(yan)模(mo)型(xing)是基于海量文本(ben)數據訓練(lian)的(de)(de)(de)(de)深(shen)度學習模(mo)型(xing)。它不(bu)(bu)僅能(neng)夠(gou)生成(cheng)自(zi)然(ran)語(yu)(yu)言(yan)(yan)文本(ben),還(huan)能(neng)夠(gou)深(shen)入理(li)解(jie)文本(ben)含(han)義,處理(li)各(ge)種(zhong)自(zi)然(ran)語(yu)(yu)言(yan)(yan)任務,如文本(ben)摘要、問答(da)、翻譯(yi)等。2023年,大(da)語(yu)(yu)言(yan)(yan)模(mo)型(xing)及其(qi)在人(ren)工智能(neng)領域的(de)(de)(de)(de)應用(yong)已(yi)(yi)成(cheng)為(wei)全球(qiu)科技(ji)研究的(de)(de)(de)(de)熱點,其(qi)在規模(mo)上的(de)(de)(de)(de)增長尤為(wei)引人(ren)注(zhu)目,參(can)(can)數量已(yi)(yi)從最(zui)初的(de)(de)(de)(de)十幾億躍升(sheng)到如今的(de)(de)(de)(de)一(yi)萬億。參(can)(can)數量的(de)(de)(de)(de)提升(sheng)使得模(mo)型(xing)能(neng)夠(gou)更(geng)加精(jing)細地(di)捕捉人(ren)類(lei)語(yu)(yu)言(yan)(yan)微(wei)妙之處,更(geng)加深(shen)入地(di)理(li)解(jie)人(ren)類(lei)語(yu)(yu)言(yan)(yan)的(de)(de)(de)(de)復(fu)雜性(xing)。在過去的(de)(de)(de)(de)一(yi)年里(li),大(da)語(yu)(yu)言(yan)(yan)模(mo)型(xing)在吸納新知識、分解(jie)復(fu)雜任務以及圖文對齊等多方面都(dou)有(you)顯(xian)著提升(sheng)。隨(sui)著技(ji)術的(de)(de)(de)(de)不(bu)(bu)斷成(cheng)熟,它將不(bu)(bu)斷拓展(zhan)其(qi)應用(yong)范圍,為(wei)人(ren)類(lei)提供更(geng)加智能(neng)化和個(ge)性(xing)化的(de)(de)(de)(de)服務,進一(yi)步改善人(ren)們的(de)(de)(de)(de)生活和生產方式(shi)。

In the realm of security applications, biometric authentication systems play a crucial role, yet one often encounters challenges concerning privacy and security while developing one. One of the most fundamental challenges lies in avoiding storing biometrics directly in the storage but still achieving decently high accuracy. Addressing this issue, we contribute to both artificial intelligence and engineering fields. We introduce an innovative image distortion technique that effectively renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models. From the theoretical perspective, we explore how reliable state-of-the-art biometrics recognition neural networks are by checking the maximal degree of image distortion, which leaves the predicted identity unchanged. On the other hand, applying this technique demonstrates a practical solution to the engineering challenge of balancing security, precision, and performance in biometric authentication systems. Through experimenting on the widely used datasets, we assess the effectiveness of our method in preserving AI feature representation and distorting relative to conventional metrics. We also compare our method with previously used approaches.

Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.

Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: //github.com/Ravoxsg/efficient_unified_crs.

Narrative visualization effectively transforms data into engaging stories, making complex information accessible to a broad audience. Large models, essential for narrative visualization, inherently facilitate this process through their superior ability to handle natural language queries and answers, generate cohesive narratives, and enhance visual communication. Inspired by previous work in narrative visualization and recent advances in large models, we synthesized potential tasks and opportunities for large models at various stages of narrative visualization. In our study, we surveyed 79 papers to explore the role of large models in automating narrative visualization creation. We propose a comprehensive pipeline that leverages large models for crafting narrative visualization, categorizing the reviewed literature into four essential phases: Data, Narration, Visualization, and Presentation. Additionally, we identify ten specific tasks where large models are applied across these stages. This study maps out the landscape of challenges and opportunities in the LM4NV process, providing insightful directions for future research and valuable guidance for scholars in the field.

Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. It also protects new agents' model details from disclosure since the training can be conducted by the agent owner locally. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. Code and data are available at: //github.com/yifanlu0227/HEAL.

Human visual recognition system shows astonishing capability of compressing visual information into a set of tokens containing rich representations without label supervision. One critical driving principle behind it is perceptual grouping. Despite being widely used in computer vision in the early 2010s, it remains a mystery whether perceptual grouping can be leveraged to derive a neural visual recognition backbone that generates as powerful representations. In this paper, we propose the Perceptual Group Tokenizer, a model that entirely relies on grouping operations to extract visual features and perform self-supervised representation learning, where a series of grouping operations are used to iteratively hypothesize the context for pixels or superpixels to refine feature representations. We show that the proposed model can achieve competitive performance compared to state-of-the-art vision architectures, and inherits desirable properties including adaptive computation without re-training, and interpretability. Specifically, Perceptual Group Tokenizer achieves 80.3% on ImageNet-1K self-supervised learning benchmark with linear probe evaluation, marking a new progress under this paradigm.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.

北京阿比特科技有限公司