Neural Theory-of-Mind (N-ToM), machine's ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters' psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs' capabilities of modeling characters' mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters' mental states in the psychological world.
Task offloading, crucial for balancing computational loads across devices in networks such as the Internet of Things, poses significant optimization challenges, including minimizing latency and energy usage under strict communication and storage constraints. While traditional optimization falls short in scalability; and heuristic approaches lack in achieving optimal outcomes, Reinforcement Learning (RL) offers a promising avenue by enabling the learning of optimal offloading strategies through iterative interactions. However, the efficacy of RL hinges on access to rich datasets and custom-tailored, realistic training environments. To address this, we introduce PeersimGym, an open-source, customizable simulation environment tailored for developing and optimizing task offloading strategies within computational networks. PeersimGym supports a wide range of network topologies and computational constraints and integrates a \textit{PettingZoo}-based interface for RL agent deployment in both solo and multi-agent setups. Furthermore, we demonstrate the utility of the environment through experiments with Deep Reinforcement Learning agents, showcasing the potential of RL-based approaches to significantly enhance offloading strategies in distributed computing settings. PeersimGym thus bridges the gap between theoretical RL models and their practical applications, paving the way for advancements in efficient task offloading methodologies.
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players' assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement -- which invites further research in the direction of cost-sharing in collaborative interactions.
Convolutional neural networks (CNNs) have achieved significant popularity, but their computational and memory intensity poses challenges for resource-constrained computing systems, particularly with the prerequisite of real-time performance. To release this burden, model compression has become an important research focus. Many approaches like quantization, pruning, early exit, and knowledge distillation have demonstrated the effect of reducing redundancy in neural networks. Upon closer examination, it becomes apparent that each approach capitalizes on its unique features to compress the neural network, and they can also exhibit complementary behavior when combined. To explore the interactions and reap the benefits from the complementary features, we propose the Chain of Compression, which works on the combinational sequence to apply these common techniques to compress the neural network. Validated on the image-based regression and classification networks across different data sets, our proposed Chain of Compression can significantly compress the computation cost by 100-1000 times with ignorable accuracy loss compared with the baseline model.
Brain-robot interaction (BRI) empowers individuals to control (semi-)automated machines through their brain activity, either passively or actively. In the past decade, BRI systems have achieved remarkable success, predominantly harnessing electroencephalogram (EEG) signals as the central component. This paper offers an up-to-date and exhaustive examination of 87 curated studies published during the last five years (2018-2023), focusing on identifying the research landscape of EEG-based BRI systems. This review aims to consolidate and underscore methodologies, interaction modes, application contexts, system evaluation, existing challenges, and potential avenues for future investigations in this domain. Based on our analysis, we present a BRI system model with three entities: Brain, Robot, and Interaction, depicting the internal relationships of a BRI system. We especially investigate the essence and principles on interaction modes between human brains and robots, a domain that has not yet been identified anywhere. We then discuss these entities with different dimensions encompassed. Within this model, we scrutinize and classify current research, reveal insights, specify challenges, and provide recommendations for future research trajectories in this field. Meanwhile, we envision our findings offer a design space for future human-robot interaction (HRI) research, informing the creation of efficient BRI frameworks.
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole. In such a paradigm, humans are found to rarely trigger analytical thinking and face difficulties in communicating the nuances of conflicting opinions to the AI when disagreements occur. To tackle this challenge, we propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making. Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates. To empower AI with deliberative capabilities, we designed Deliberative AI, which leverages large language models (LLMs) as a bridge between humans and domain-specific models to enable flexible conversational interactions and faithful information provision. An exploratory evaluation on a graduate admissions task shows that Deliberative AI outperforms conventional explainable AI (XAI) assistants in improving humans' appropriate reliance and task performance. Based on a mixed-methods analysis of participant behavior, perception, user experience, and open-ended feedback, we draw implications for future AI-assisted decision tool design.
Despite the recent progress on 6D object pose estimation methods for robotic grasping, a substantial performance gap persists between the capabilities of these methods on existing datasets and their efficacy in real-world mobile manipulation tasks, particularly when robots rely solely on their monocular egocentric field of view (FOV). Existing real-world datasets primarily focus on table-top grasping scenarios, where a robotic arm is placed in a fixed position and the objects are centralized within the FOV of fixed external camera(s). Assessing performance on such datasets may not accurately reflect the challenges encountered in everyday mobile manipulation tasks within kitchen environments such as retrieving objects from higher shelves, sinks, dishwashers, ovens, refrigerators, or microwaves. To address this gap, we present Kitchen, a novel benchmark designed specifically for estimating the 6D poses of objects located in diverse positions within kitchen settings. For this purpose, we recorded a comprehensive dataset comprising around 205k real-world RGBD images for 111 kitchen objects captured in two distinct kitchens, utilizing one humanoid robot with its egocentric perspectives. Subsequently, we developed a semi-automated annotation pipeline, to streamline the labeling process of such datasets, resulting in the generation of 2D object labels, 2D object segmentation masks, and 6D object poses with minimized human effort. The benchmark, the dataset, and the annotation pipeline are available at //kitchen-dataset.github.io/KITchen.
Vision-and-Language Navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavour to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometer and depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision-making and instruction following. We train NaVid with 550k navigation samples collected from VLN-CE trajectories, including action-planning and instruction-reasoning samples, along with 665k large-scale web data. Extensive experiments show that NaVid achieves SOTA performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
Amidst the rapid evolution of LLMs, the significance of evaluation in comprehending and propelling these models forward is increasingly paramount. Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs. However, the extent and nature of these impacts continue to be subjects of debate because most assessments have been restricted to a limited number of models and data points. Clarifying the effects of these factors on performance scores can be more effectively achieved through a statistical lens. Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods. With the advent of a uniform evaluation framework, our research leverages an expansive dataset of evaluation results, introducing a comprehensive statistical methodology. This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique, offering a robust and transparent approach to deciphering LLM performance data. Contrary to prevailing findings, our results challenge assumptions about emergent abilities and the influence of given training types and architectures in LLMs. These findings furnish new perspectives on the characteristics, intrinsic nature, and developmental trajectories of LLMs. By providing straightforward and reliable methods to scrutinize and reassess LLM performance data, this study contributes a nuanced perspective on LLM efficiency and potentials.
In the Industrial Internet of Things (IoT), a large amount of data will be generated every day. Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models, thus the federated learning, a distributed machine learning paradigm that protects data privacy, has been widely used in IoT. However, in practical federated learning, the data distributions usually have large differences across devices, and the heterogeneity of data will deteriorate the performance of the model. Moreover, federated learning in IoT usually has a large number of devices involved in training, and the limited communication resource of cloud servers become a bottleneck for training. To address the above issues, in this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework, which can mitigate the impact of data heterogeneity, and can be deployed at lage scale in IoT. To address the effect of data heterogeneity, we use an incremental subgradient optimization algorithm in each ring cluster to improve the generalization ability of the ring cluster models. Our extensive experiments show that our approach can effectively mitigate the impact of data heterogeneity and alleviate the communication bottleneck in cloud servers.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.