亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces Stringesthesia, an interactive and improvised performance paradigm. Stringesthesia uses real-time neuroimaging to connect performers and audiences, enabling direct access to the performers mental state and determining audience participation during the performance. Functional near-infrared spectroscopy, or fNIRS, a noninvasive neuroimaging tool, was used to assess metabolic activity of brain areas collectively associated with a metric we call trust. A visualization representing the real-time measurement of the performers level of trust was projected behind the performer and used to dynamically restrict or promote audience participation. Throughout the paper we discuss prior work that heavily influenced our design, conceptual and methodological issues with using fNIRS technology, system architecture, and feedback from the audience and performer.

相關內容

This paper considers a stochastic Multi-Armed Bandit (MAB) problem with dual objectives: (i) quick identification and commitment to the optimal arm, and (ii) reward maximization throughout a sequence of $T$ consecutive rounds. Though each objective has been individually well-studied, i.e., best arm identification for (i) and regret minimization for (ii), the simultaneous realization of both objectives remains an open problem, despite its practical importance. This paper introduces \emph{Regret Optimal Best Arm Identification} (ROBAI) which aims to achieve these dual objectives. To solve ROBAI with both pre-determined stopping time and adaptive stopping time requirements, we present an algorithm called EOCP and its variants respectively, which not only achieve asymptotic optimal regret in both Gaussian and general bandits, but also commit to the optimal arm in $\mathcal{O}(\log T)$ rounds with pre-determined stopping time and $\mathcal{O}(\log^2 T)$ rounds with adaptive stopping time. We further characterize lower bounds on the commitment time (equivalent to the sample complexity) of ROBAI, showing that EOCP and its variants are sample optimal with pre-determined stopping time, and almost sample optimal with adaptive stopping time. Numerical results confirm our theoretical analysis and reveal an interesting "over-exploration" phenomenon carried by classic UCB algorithms, such that EOCP has smaller regret even though it stops exploration much earlier than UCB, i.e., $\mathcal{O}(\log T)$ versus $\mathcal{O}(T)$, which suggests over-exploration is unnecessary and potentially harmful to system performance.

This paper proposes a new methodology for deriving a point-based dimensionally homogeneous Jacobian, intended for performance evaluation and optimization of parallel manipulators with mixed degrees of freedom. Optimal manipulator often rely on performance indices obtained from the Jacobian matrix. However, when manipulators exhibit mixed translational and rotational freedoms, the conventional Jacobian's inconsistency of units lead to unbalanced optimal result. Addressing this issue, a point-based dimensionally homogeneous Jacobian has appeared as a prominent solution. However, existing point-based approaches for formulating dimensionally homogeneous Jacobian are applicable to a limited variety of parallel manipulators. Moreover, they are complicated and less intuitive. This paper introduces an extended selection matrix that combines component velocities from different points to describe the entire motion of moving plate. This proposed approach enables us to formulate an intuitive point-based, dimensionally homogeneous Jacobian, which can be applied to a wide variety of constrained parallel manipulators. To prove the validity of proposed method, a numerical example is provided utilizing a four-degree-of-freedom parallel manipulator.

This paper aims to address critical issues in the field of Multi-Object Tracking (MOT) by proposing an efficient and computationally resource-efficient end-to-end multi-object tracking model, named MO-YOLO. Traditional MOT methods typically involve two separate steps: object detection and object tracking, leading to computational complexity and error propagation issues. Recent research has demonstrated outstanding performance in end-to-end MOT models based on Transformer architectures, but they require substantial hardware support. MO-YOLO combines the strengths of YOLO and RT-DETR models to construct a high-efficiency, lightweight, and resource-efficient end-to-end multi-object tracking network, offering new opportunities in the multi-object tracking domain. On the MOT17 dataset, MOTR\cite{zeng2022motr} requires training with 8 GeForce 2080 Ti GPUs for 4 days to achieve satisfactory results, while MO-YOLO only requires 1 GeForce 2080 Ti GPU and 12 hours of training to achieve comparable performance.

We study empirical Bayes estimation in high-dimensional linear regression. To facilitate computationally efficient estimation of the underlying prior, we adopt a variational empirical Bayes approach, introduced originally in Carbonetto and Stephens (2012) and Kim et al. (2022). We establish asymptotic consistency of the nonparametric maximum likelihood estimator (NPMLE) and its (computable) naive mean field variational surrogate under mild assumptions on the design and the prior. Assuming, in addition, that the naive mean field approximation has a dominant optimizer, we develop a computationally efficient approximation to the oracle posterior distribution, and establish its accuracy under the 1-Wasserstein metric. This enables computationally feasible Bayesian inference; e.g., construction of posterior credible intervals with an average coverage guarantee, Bayes optimal estimation for the regression coefficients, estimation of the proportion of non-nulls, etc. Our analysis covers both deterministic and random designs, and accommodates correlations among the features. To the best of our knowledge, this provides the first rigorous nonparametric empirical Bayes method in a high-dimensional regression setting without sparsity.

How can we better extract entities and relations from text? Using multimodal extraction with images and text obtains more signals for entities and relations, and aligns them through graphs or hierarchical fusion, aiding in extraction. Despite attempts at various fusions, previous works have overlooked many unlabeled image-caption pairs, such as NewsCLIPing. This paper proposes innovative pre-training objectives for entity-object and relation-image alignment, extracting objects from images and aligning them with entity and relation prompts for soft pseudo-labels. These labels are used as self-supervised signals for pre-training, enhancing the ability to extract entities and relations. Experiments on three datasets show an average 3.41% F1 improvement over prior SOTA. Additionally, our method is orthogonal to previous multimodal fusions, and using it on prior SOTA fusions further improves 5.47% F1.

The Hylland-Zeckhauser gave a classic pricing-based mechanism (HZ) for a one-sided matching market; it yields allocations satisfying Pareto optimality and envy-freeness (Hylland and Zeckhauser, 1979), and the mechanism is incentive compatible in the large (He et al., 2018). They also studied the exchange extension of HZ and gave an example showing that it may not even admit an equilibrium. In this paper, we consider two models of two sided matching markets: when utility functions are symmetric and when they are non-symmetric. We ask if these models always admit allocations satisfying the two basic properties of Pareto efficiency and envy freeness. Our results are negative. A corollary of the former result is a negative result for non-bipartite matching markets as well.

Measuring the distance between machine-produced and human language is a critical open problem. Inspired by empirical findings from psycholinguistics on the periodicity of entropy in language, we propose FACE, a set of metrics based on Fourier Analysis of the estimated Cross-Entropy of language, for measuring the similarity between model-generated and human-written languages. Based on an open-ended generation task and the experimental data from previous studies, we find that FACE can effectively identify the human-model gap, scales with model size, reflects the outcomes of different sampling methods for decoding, correlates well with other evaluation metrics and with human judgment scores.

We present MsATL: the first tool for deciding the satisfiability of Alternating-time Temporal Logic (ATL) with imperfect information. MsATL combines SAT Modulo Monotonic Theories solvers with existing ATL model checkers: MCMAS and STV. The tool can deal with various semantics of ATL, including perfect and imperfect information, and can handle additional practical requirements. MsATL can be applied for synthesis of games that conform to a given specification, with the synthesised game often being minimal.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司