We study empirical Bayes estimation in high-dimensional linear regression. To facilitate computationally efficient estimation of the underlying prior, we adopt a variational empirical Bayes approach, introduced originally in Carbonetto and Stephens (2012) and Kim et al. (2022). We establish asymptotic consistency of the nonparametric maximum likelihood estimator (NPMLE) and its (computable) naive mean field variational surrogate under mild assumptions on the design and the prior. Assuming, in addition, that the naive mean field approximation has a dominant optimizer, we develop a computationally efficient approximation to the oracle posterior distribution, and establish its accuracy under the 1-Wasserstein metric. This enables computationally feasible Bayesian inference; e.g., construction of posterior credible intervals with an average coverage guarantee, Bayes optimal estimation for the regression coefficients, estimation of the proportion of non-nulls, etc. Our analysis covers both deterministic and random designs, and accommodates correlations among the features. To the best of our knowledge, this provides the first rigorous nonparametric empirical Bayes method in a high-dimensional regression setting without sparsity.
This paper presents a deep learning-based system for efficient automatic case summarization. Leveraging state-of-the-art natural language processing techniques, the system offers both supervised and unsupervised methods to generate concise and relevant summaries of lengthy legal case documents. The user-friendly interface allows users to browse the system's database of legal case documents, select their desired case, and choose their preferred summarization method. The system generates comprehensive summaries for each subsection of the legal text as well as an overall summary. This demo streamlines legal case document analysis, potentially benefiting legal professionals by reducing workload and increasing efficiency. Future work will focus on refining summarization techniques and exploring the application of our methods to other types of legal texts.
This paper presents an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear stochastic systems. This method leverages an infinite-dimensional feature to linearly represent the state-action value function and exploits finite-dimensional truncation approximation for practical implementation. To characterize the effectiveness of these finite dimensional approximations, we provide an in-depth theoretical analysis to characterize the approximation error induced by the finite-dimension truncation and statistical error induced by finite-sample approximation in both policy evaluation and policy optimization. Our analysis includes two prominent kernel approximation methods: truncations onto random features and Nystrom features. We also empirically test the algorithm and compare the performance with Koopman-based, iLQR, and energy-based methods on a few benchmark problems.
Knowledge Representation (KR) and facet-analytical Knowledge Organization (KO) have been the two most prominent methodologies of data and knowledge modelling in the Artificial Intelligence community and the Information Science community, respectively. KR boasts of a robust and scalable ecosystem of technologies to support knowledge modelling while, often, underemphasizing the quality of its models (and model-based data). KO, on the other hand, is less technology-driven but has developed a robust framework of guiding principles (canons) for ensuring modelling (and model-based data) quality. This paper elucidates both the KR and facet-analytical KO methodologies in detail and provides a functional mapping between them. Out of the mapping, the paper proposes an integrated KO-enriched KR methodology with all the standard components of a KR methodology plus the guiding canons of modelling quality provided by KO. The practical benefits of the methodological integration has been exemplified through a prominent case study of KR-based image annotation exercise.
Data leakage is a critical issue when training and evaluating any method based on supervised learning. The state-of-the-art methods for online mapping are based on supervised learning and are trained predominantly using two datasets: nuScenes and Argoverse 2. These datasets revisit the same geographic locations across training, validation, and test sets. Specifically, over $80$% of nuScenes and $40$% of Argoverse 2 validation and test samples are located less than $5$ m from a training sample. This allows methods to localize within a memorized implicit map during testing and leads to inflated performance numbers being reported. To reveal the true performance in unseen environments, we introduce geographical splits of the data. Experimental results show significantly lower performance numbers, for some methods dropping with more than $45$ mAP, when retraining and reevaluating existing online mapping models with the proposed split. Additionally, a reassessment of prior design choices reveals diverging conclusions from those based on the original split. Notably, the impact of the lifting method and the support from auxiliary tasks (e.g., depth supervision) on performance appears less substantial or follows a different trajectory than previously perceived. Geographical splits can be found //github.com/LiljaAdam/geographical-splits
The fundamental goal of the Text-to-SQL task is to translate natural language question into SQL query. Current research primarily emphasizes the information coupling between natural language questions and schemas, and significant progress has been made in this area. The natural language questions as the primary task requirements source determines the hardness of correspond SQL queries, the correlation between the two always be ignored. However, when the correlation between questions and queries was decoupled, it may simplify the task. In this paper, we introduce an innovative framework for Text-to-SQL based on decoupling SQL query hardness parsing. This framework decouples the Text-to-SQL task based on query hardness by analyzing questions and schemas, simplifying the multi-hardness task into a single-hardness challenge. This greatly reduces the parsing pressure on the language model. We evaluate our proposed framework and achieve a new state-of-the-art performance of fine-turning methods on Spider dev.
The rapid evolution of Web UI incurs time and effort in maintaining UI tests. Existing techniques in Web UI test repair focus on finding the target elements on the new web page that match the old ones so that the corresponding broken statements can be repaired. We present the first study that investigates the feasibility of using prior Web UI repair techniques for initial local matching and then using ChatGPT to perform global matching. Our key insight is that given a list of elements matched by prior techniques, ChatGPT can leverage the language understanding to perform global view matching and use its code generation model for fixing the broken statements. To mitigate hallucination in ChatGPT, we design an explanation validator that checks whether the provided explanation for the matching results is consistent, and provides hints to ChatGPT via a self-correction prompt to further improve its results. Our evaluation on a widely used dataset shows that the ChatGPT-enhanced techniques improve the effectiveness of existing Web test repair techniques. Our study also shares several important insights in improving future Web UI test repair techniques.
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks. Despite the critical importance of these tasks, existing methodologies often struggle to generate high-caliber results. We begin by examining the inherent limitations in previous diffusion priors. We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation. To address this issue, we propose a novel, unified framework that iteratively optimizes both the 3D model and the diffusion prior. Leveraging the different learnable parameters of the diffusion prior, our approach offers multiple configurations, affording various trade-offs between performance and implementation complexity. Notably, our experimental results demonstrate that our method markedly surpasses existing techniques, establishing new state-of-the-art in the realm of text-to-3D generation. Furthermore, our approach exhibits impressive performance on both NeRF and the newly introduced 3D Gaussian Splatting backbones. Additionally, our framework yields insightful contributions to the understanding of recent score distillation methods, such as the VSD and DDS loss.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.