亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study developed a new statistical model and method for analyzing the precision of binary measurement methods from collaborative studies. The model is based on beta-binomial distributions. In other words, it assumes that the sensitivity of each laboratory obeys a beta distribution, and the binary measured values under a given sensitivity follow a binomial distribution. We propose the key precision measures of repeatability and reproducibility for the model, and provide their unbiased estimates. Further, through consideration of a number of statistical test methods for homogeneity of proportions, we propose appropriate methods for determining laboratory effects in the new model. Finally, we apply the results to real-world examples in the fields of food safety and chemical risk assessment and management.

相關內容

The decreasing cost and improved sensor and monitoring system technology (e.g. fiber optics and strain gauges) have led to more measurements in close proximity to each other. When using such spatially dense measurement data in Bayesian system identification strategies, the correlation in the model prediction error can become significant. The widely adopted assumption of uncorrelated Gaussian error may lead to inaccurate parameter estimation and overconfident predictions, which may lead to sub-optimal decisions. This paper addresses the challenges of performing Bayesian system identification for structures when large datasets are used, considering both spatial and temporal dependencies in the model uncertainty. We present an approach to efficiently evaluate the log-likelihood function, and we utilize nested sampling to compute the evidence for Bayesian model selection. The approach is first demonstrated on a synthetic case and then applied to a (measured) real-world steel bridge. The results show that the assumption of dependence in the model prediction uncertainties is decisively supported by the data. The proposed developments enable the use of large datasets and accounting for the dependency when performing Bayesian system identification, even when a relatively large number of uncertain parameters is inferred.

This paper studies the causal representation learning problem when the latent causal variables are observed indirectly through an unknown linear transformation. The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables. Sufficient conditions for DAG recovery are established, and it is shown that a large class of non-linear models in the latent space (e.g., causal mechanisms parameterized by two-layer neural networks) satisfy these conditions. These sufficient conditions ensure that the effect of an intervention can be detected correctly from changes in the score. Capitalizing on this property, recovering a valid transformation is facilitated by the following key property: any valid transformation renders latent variables' score function to necessarily have the minimal variations across different interventional environments. This property is leveraged for perfect recovery of the latent DAG structure using only \emph{soft} interventions. For the special case of stochastic \emph{hard} interventions, with an additional hypothesis testing step, one can also uniquely recover the linear transformation up to scaling and a valid causal ordering.

Since their introduction in Abadie and Gardeazabal (2003), Synthetic Control (SC) methods have quickly become one of the leading methods for estimating causal effects in observational studies in settings with panel data. Formal discussions often motivate SC methods by the assumption that the potential outcomes were generated by a factor model. Here we study SC methods from a design-based perspective, assuming a model for the selection of the treated unit(s) and period(s). We show that the standard SC estimator is generally biased under random assignment. We propose a Modified Unbiased Synthetic Control (MUSC) estimator that guarantees unbiasedness under random assignment and derive its exact, randomization-based, finite-sample variance. We also propose an unbiased estimator for this variance. We document in settings with real data that under random assignment, SC-type estimators can have root mean-squared errors that are substantially lower than that of other common estimators. We show that such an improvement is weakly guaranteed if the treated period is similar to the other periods, for example, if the treated period was randomly selected. While our results only directly apply in settings where treatment is assigned randomly, we believe that they can complement model-based approaches even for observational studies.

Current ethical debates on the use of artificial intelligence (AI) in health care treat AI as a product of technology in three ways: First, by assessing risks and potential benefits of currently developed AI-enabled products with ethical checklists; second, by proposing ex ante lists of ethical values seen as relevant for the design and development of assisting technology, and third, by promoting AI technology to use moral reasoning as part of the automation process. Subsequently, we propose a fourth approach to AI, namely as a methodological tool to assist ethical reflection. We provide a concept of an AI-simulation informed by three separate elements: 1) stochastic human behavior models based on behavioral data for simulating realistic settings, 2) qualitative empirical data on value statements regarding internal policy, and 3) visualization components that aid in understanding the impact of changes in these variables. The potential of this approach is to inform an interdisciplinary field about anticipated ethical challenges or ethical trade-offs in concrete settings and, hence, to spark a re-evaluation of design and implementation plans. This may be particularly useful for applications that deal with extremely complex values and behavior or with limitations on the communication resources of affected persons (e.g., persons with dementia care or for care of persons with cognitive impairment). Simulation does not replace ethical reflection but does allow for detailed, context-sensitive analysis during the design process and prior to implementation. Finally, we discuss the inherently quantitative methods of analysis afforded by stochastic simulations as well as the potential for ethical discussions and how simulations with AI can improve traditional forms of thought experiments and future-oriented technology assessment.

Developing efficient Bayesian computation algorithms for imaging inverse problems is challenging due to the dimensionality involved and because Bayesian imaging models are often not smooth. Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation that is amenable to efficient exploration by using Langevin Markov chain Monte Carlo (MCMC) methods. An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution that is amenable to efficient exploration by Gibbs sampling. This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK (ls SK-ROCK), which tightly combines the benefits of the two aforementioned strategies. Additionally, instead of viewing the augmented posterior distribution as an approximation of the original model, we propose to consider it as a generalisation of this model. Following on from this, we empirically show that there is a range of values for the relaxation parameter for which the accuracy of the model improves, and propose a stochastic optimisation algorithm to automatically identify the optimal amount of relaxation for a given problem. In this regime, ls SK-ROCK converges faster than competing approaches from the state of the art, and also achieves better accuracy since the underlying augmented Bayesian model has a higher Bayesian evidence. The proposed methodology is demonstrated with a range of numerical experiments related to image deblurring and inpainting, as well as with comparisons with alternative approaches from the state of the art. An open-source implementation of the proposed MCMC methods is available from //github.com/luisvargasmieles/ls-MCMC.

We consider dependent clustering of observations in groups. The proposed model, called the plaid atoms model (PAM), estimates a set of clusters for each group and allows some clusters to be either shared with other groups or uniquely possessed by the group. PAM is based on an extension to the well-known stick-breaking process by adding zero as a possible value for the cluster weights, resulting in a zero-augmented beta (ZAB) distribution in the model. As a result, ZAB allows some cluster weights to be exactly zero in multiple groups, thereby enabling shared and unique atoms across groups. We explore theoretical properties of PAM and show its connection to known Bayesian nonparametric models. We propose an efficient slice sampler for posterior inference. Minor extensions of the proposed model for multivariate or count data are presented. Simulation studies and applications using real-world datasets illustrate the model's desirable performance.

We present algorithms based on satisfiability problem (SAT) solving, as well as answer set programming (ASP), for solving the problem of determining inconsistency degrees in propositional knowledge bases. We consider six different inconsistency measures whose respective decision problems lie on the first level of the polynomial hierarchy. Namely, these are the contension inconsistency measure, the forgetting-based inconsistency measure, the hitting set inconsistency measure, the max-distance inconsistency measure, the sum-distance inconsistency measure, and the hit-distance inconsistency measure. In an extensive experimental analysis, we compare the SAT-based and ASP-based approaches with each other, as well as with a set of naive baseline algorithms. Our results demonstrate that overall, both the SAT-based and the ASP-based approaches clearly outperform the naive baseline methods in terms of runtime. The results further show that the proposed ASP-based approaches perform superior to the SAT-based ones with regard to all six inconsistency measures considered in this work. Moreover, we conduct additional experiments to explain the aforementioned results in greater detail.

We study numerical integration over bounded regions in $\mathbb{R}^s, s\ge1$ with respect to some probability measure. We replace random sampling with quasi-Monte Carlo methods, where the underlying point set is derived from deterministic constructions that aim to fill the space more evenly than random points. Such quasi-Monte Carlo point sets are ordinarily designed for the uniform measure, and the theory only works for product measures when a coordinate-wise transformation is applied. Going beyond this setting, we first consider the case where the target density is a mixture distribution where each term in the mixture comes from a product distribution. Next we consider target densities which can be approximated with such mixture distributions. We require the approximation to be a sum of coordinate-wise products and the approximation to be positive everywhere (so that they can be re-scaled to probability density functions). We use tensor product hat function approximations for this purpose here, since a hat function approximation of a positive function is itself positive. We also study more complex algorithms, where we first approximate the target density with a general Gaussian mixture distribution and approximate the mixtures with an adaptive hat function approximation on rotated intervals. The Gaussian mixture approximation allows us to locate the essential parts of the target density, whereas the adaptive hat function approximation allows us to approximate the finer structure of the target density. We prove convergence rates for each of the integration techniques based on quasi-Monte Carlo sampling for integrands with bounded partial mixed derivatives. The employed algorithms are based on digital $(t,s)$-sequences over the finite field $\mathbb{F}_2$ and an inversion method. Numerical examples illustrate the performance of the algorithms for some target densities and integrands.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

北京阿比特科技有限公司