亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop a domain decomposition method for the nonlinear Poisson-Boltzmann equation based on a solvent-excluded surface widely used in computational chemistry. The model relies on a nonlinear equation defined in $\mathbb{R}^3$ with a space-dependent dielectric permittivity and an ion-exclusion function that accounts for steric effects. Potential theory arguments transform the nonlinear equation into two coupled equations defined in a bounded domain. Then, the Schwarz decomposition method is used to formulate local problems by decomposing the cavity into overlapping balls and only solving a set of coupled sub-equations in each ball. The main novelty of the proposed method is the introduction of a hybrid linear-nonlinear solver used to solve the equation. A series of numerical experiments are presented to test the method and show the importance of the nonlinear model.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

In this work, we introduce a numerical method for approximating arbitrary differential operators on vector fields in the weak form given point cloud data sampled randomly from a $d$ dimensional manifold embedded in $\mathbb{R}^n$. This method generalizes the local linear mesh method to the local curved mesh method, thus, allowing for the estimation of differential operators with nontrivial Christoffer symbols, such as the Bochner or Hodge Laplacians. In particular, we leverage the potentially small intrinsic dimension of the manifold $(d \ll n)$ to construct local parameterizations that incorporate both local meshes and higher-order curvature information. The former is constructed using low dimensional meshes obtained from local data projected to the tangent spaces, while the latter is obtained by fitting local polynomials with the generalized moving least squares. Theoretically, we prove the weak and spectral convergence rates for the proposed method for the estimation of the Bochner Laplacian. We provide numerical results supporting the theoretical convergence rates for the Bochner and Hodge Laplacians on simple manifolds.

We present GSDeformer, a method that achieves free-form deformation on 3D Gaussian Splatting(3DGS) without requiring any architectural changes. Our method extends cage-based deformation, a traditional mesh deformation method, to 3DGS. This is done by converting 3DGS into a novel proxy point cloud representation, where its deformation can be used to infer the transformations to apply on the 3D gaussians making up 3DGS. We also propose an automatic cage construction algorithm for 3DGS to minimize manual work. Our method does not modify the underlying architecture of 3DGS. Therefore, any existing trained vanilla 3DGS can be easily edited by our method. We compare the deformation capability of our method against other existing methods, demonstrating the ease of use and comparable quality of our method, despite being more direct and thus easier to integrate with other concurrent developments on 3DGS.

In this paper, we generalize the Jacobi eigenvalue algorithm to compute all eigenvalues and eigenvectors of a dual quaternion Hermitian matrix and show the convergence. We also propose a three-step Jacobi eigenvalue algorithm to compute the eigenvalues when a dual quaternion Hermitian matrix has two eigenvalues with identical standard parts but different dual parts and prove the convergence. Numerical experiments are presented to illustrate the efficiency and stability of the proposed Jacobi eigenvalue algorithm compaired to the power method and the Rayleigh quotient iteration method.

In this paper, we present the derivation of a multicontinuum model for the coupled flow and transport equations by applying multicontinuum homogenization. We perform the multicontinuum expansion for both flow and transport solutions and formulate novel coupled constraint cell problems to capture the multiscale property, where oversampled regions are utilized to avoid boundary effects. Assuming the smoothness of macroscopic variables, we obtain a multicontinuum system composed of macroscopic elliptic equations and convection-diffusion-reaction equations with homogenized effective properties. Finally, we present numerical results for various coefficient fields and boundary conditions to validate our proposed algorithm.

Autonomously exploring the unknown physical properties of novel objects such as stiffness, mass, center of mass, friction coefficient, and shape is crucial for autonomous robotic systems operating continuously in unstructured environments. We introduce a novel visuo-tactile based predictive cross-modal perception framework where initial visual observations (shape) aid in obtaining an initial prior over the object properties (mass). The initial prior improves the efficiency of the object property estimation, which is autonomously inferred via interactive non-prehensile pushing and using a dual filtering approach. The inferred properties are then used to enhance the predictive capability of the cross-modal function efficiently by using a human-inspired `surprise' formulation. We evaluated our proposed framework in the real-robotic scenario, demonstrating superior performance.

In this work, we present approaches to rigorously certify $A$- and $A(\alpha)$-stability in Runge-Kutta methods through the solution of convex feasibility problems defined by linear matrix inequalities. We adopt two approaches. The first is based on sum-of-squares programming applied to the Runge-Kutta $E$-polynomial and is applicable to both $A$- and $A(\alpha)$-stability. In the second, we sharpen the algebraic conditions for $A$-stability of Cooper, Scherer, T{\"u}rke, and Wendler to incorporate the Runge-Kutta order conditions. We demonstrate how the theoretical improvement enables the practical use of these conditions for certification of $A$-stability within a computational framework. We then use both approaches to obtain rigorous certificates of stability for several diagonally implicit schemes devised in the literature.

Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayesian approach by embedding CNNs within the generalized linear models (GLMs) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo (MC) dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficients and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from MC dropout, we can account for uncertainties in extracting the features. We apply our methods to biological and epidemiological problems, which have both high-dimensional correlated inputs and vector covariates. Specifically, we consider malaria incidence data, brain tumor image data, and fMRI data. By extracting information from correlated inputs, the proposed method can provide an interpretable Bayesian analysis. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司