We study the problem of making predictions of an adversarially chosen high-dimensional state that are unbiased subject to an arbitrary collection of conditioning events, with the goal of tailoring these events to downstream decision makers. We give efficient algorithms for solving this problem, as well as a number of applications that stem from choosing an appropriate set of conditioning events.
Linear regression adjustment is commonly used to analyse randomised controlled experiments due to its efficiency and robustness against model misspecification. Current testing and interval estimation procedures leverage the asymptotic distribution of such estimators to provide Type-I error and coverage guarantees that hold only at a single sample size. Here, we develop the theory for the anytime-valid analogues of such procedures, enabling linear regression adjustment in the sequential analysis of randomised experiments. We first provide sequential $F$-tests and confidence sequences for the parametric linear model, which provide time-uniform Type-I error and coverage guarantees that hold for all sample sizes. We then relax all linear model parametric assumptions in randomised designs and provide nonparametric model-free sequential tests and confidence sequences for treatment effects. This formally allows experiments to be continuously monitored for significance, stopped early, and safeguards against statistical malpractices in data collection. A particular feature of our results is their simplicity. Our test statistics and confidence sequences all emit closed-form expressions, which are functions of statistics directly available from a standard linear regression table. We illustrate our methodology with the sequential analysis of software A/B experiments at Netflix, performing regression adjustment with pre-treatment outcomes.
We study the problem of finding statistically distinct plans for stochastic planning and task assignment problems such as online multi-robot pickup and delivery (MRPD) when facing multiple competing objectives. In many real-world settings robot fleets do not only need to fulfil delivery requests, but also have to consider auxiliary objectives such as energy efficiency or avoiding human-centered work spaces. We pose MRPD as a multi-objective optimization problem where the goal is to find MRPD policies that yield different trade-offs between given objectives. There are two main challenges: 1) MRPD is computationally hard, which limits the number of trade-offs that can reasonably be computed, and 2) due to the random task arrivals, one needs to consider statistical variance of the objective values in addition to the average. We present an adaptive sampling algorithm that finds a set of policies which i) are approximately optimal, ii) approximate the set of all optimal solutions, and iii) are statistically distinguishable. We prove completeness and adapt a state-of-the-art MRPD solver to the multi-objective setting for three example objectives. In a series of simulation experiments we demonstrate the advantages of the proposed method compared to baseline approaches and show its robustness in a sensitivity analysis. The approach is general and could be adapted to other multi-objective task assignment and planning problems under uncertainty.
Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.
Homophily, the tendency of individuals who are alike to form ties with one another, is an important concept in the study of social networks. Yet accounting for homophily effects is complicated in the context of bipartite networks where ties connect individuals not with one another but rather with a separate set of nodes, which might also be individuals but which are often an entirely different type of objects. As a result, much work on the effect of homophily in a bipartite network proceeds by first eliminating the bipartite structure, collapsing a two-mode network to a one-mode network and thereby ignoring potentially meaningful structure in the data. We introduce a set of methods to model homophily on bipartite networks without losing information in this way, then we demonstrate that these methods allow for substantively interesting findings in management science not possible using standard techniques. These methods are implemented in the widely-used ergm package for R.
Decentralised learning has recently gained traction as an alternative to federated learning in which both data and coordination are distributed over its users. To preserve the confidentiality of users' data, decentralised learning relies on differential privacy, multi-party computation, or a combination thereof. However, running multiple privacy-preserving summations in sequence may allow adversaries to perform reconstruction attacks. Unfortunately, current reconstruction countermeasures either cannot trivially be adapted to the distributed setting, or add excessive amounts of noise. In this work, we first show that passive honest-but-curious adversaries can reconstruct other users' private data after several privacy-preserving summations. For example, in subgraphs with 18 users, we show that only three passive honest-but-curious adversaries succeed at reconstructing private data 11.0% of the time, requiring an average of 8.8 summations per adversary. The success rate is independent of the size of the full network. We consider weak adversaries, who do not control the graph topology and can exploit neither the workings of the summation protocol nor the specifics of users' data. We develop a mathematical understanding of how reconstruction relates to topology and propose the first topology-based decentralised defence against reconstruction attacks. Specifically, we show that reconstruction requires a number of adversaries linear in the length of the network's shortest cycle. Consequently, reconstructing private data from privacy-preserving summations is impossible in acyclic networks. Our work is a stepping stone for a formal theory of decentralised reconstruction defences based on topology. Such a theory would generalise our countermeasure beyond summation, define confidentiality in terms of entropy, and describe the effects of (topology-aware) differential privacy.
We consider the high-dimensional linear regression model and assume that a fraction of the measurements are altered by an adversary with complete knowledge of the data and the underlying distribution. We are interested in a scenario where dense additive noise is heavy-tailed while the measurement vectors follow a sub-Gaussian distribution. Within this framework, we establish minimax lower bounds for the performance of an arbitrary estimator that depend on the the fraction of corrupted observations as well as the tail behavior of the additive noise. Moreover, we design a modification of the so-called Square-Root Slope estimator with several desirable features: (a) it is provably robust to adversarial contamination, and satisfies performance guarantees in the form of sub-Gaussian deviation inequalities that match the lower error bounds, up to logarithmic factors; (b) it is fully adaptive with respect to the unknown sparsity level and the variance of the additive noise, and (c) it is computationally tractable as a solution of a convex optimization problem. To analyze performance of the proposed estimator, we prove several properties of matrices with sub-Gaussian rows that may be of independent interest.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.