In this paper, we propose the Continuous Time Fractional Topic Model (cFTM), a new method for dynamic topic modeling. This approach incorporates fractional Brownian motion~(fBm) to effectively identify positive or negative correlations in topic and word distribution over time, revealing long-term dependency or roughness. Our theoretical analysis shows that the cFTM can capture these long-term dependency or roughness in both topic and word distributions, mirroring the main characteristics of fBm. Moreover, we prove that the parameter estimation process for the cFTM is on par with that of LDA, traditional topic models. To demonstrate the cFTM's property, we conduct empirical study using economic news articles. The results from these tests support the model's ability to identify and track long-term dependency or roughness in topics over time.
This paper introduces kDGLM, an R package designed for Bayesian analysis of Generalized Dynamic Linear Models (GDLM), with a primary focus on both uni- and multivariate exponential families. Emphasizing sequential inference for time series data, the kDGLM package provides comprehensive support for fitting, smoothing, monitoring, and feed-forward interventions. The methodology employed by kDGLM, as proposed in Alves et al. (2024), seamlessly integrates with well-established techniques from the literature, particularly those used in (Gaussian) Dynamic Models. These include discount strategies, autoregressive components, transfer functions, and more. Leveraging key properties of the Kalman filter and smoothing, kDGLM exhibits remarkable computational efficiency, enabling virtually instantaneous fitting times that scale linearly with the length of the time series. This characteristic makes it an exceptionally powerful tool for the analysis of extended time series. For example, when modeling monthly hospital admissions in Brazil due to gastroenteritis from 2010 to 2022, the fitting process took a mere 0.11s. Even in a spatial-time variant of the model (27 outcomes, 110 latent states, and 156 months, yielding 17,160 parameters), the fitting time was only 4.24s. Currently, the kDGLM package supports a range of distributions, including univariate Normal (unknown mean and observational variance), bivariate Normal (unknown means, observational variances, and correlation), Poisson, Gamma (known shape and unknown mean), and Multinomial (known number of trials and unknown event probabilities). Additionally, kDGLM allows the joint modeling of multiple time series, provided each series follows one of the supported distributions. Ongoing efforts aim to continuously expand the supported distributions.
In this paper, we propose a simple and strong framework for Tracking Any Point with TRansformers (TAPTR). Based on the observation that point tracking bears a great resemblance to object detection and tracking, we borrow designs from DETR-like algorithms to address the task of TAP. In the proposed framework, in each video frame, each tracking point is represented as a point query, which consists of a positional part and a content part. As in DETR, each query (its position and content feature) is naturally updated layer by layer. Its visibility is predicted by its updated content feature. Queries belonging to the same tracking point can exchange information through self-attention along the temporal dimension. As all such operations are well-designed in DETR-like algorithms, the model is conceptually very simple. We also adopt some useful designs such as cost volume from optical flow models and develop simple designs to provide long temporal information while mitigating the feature drifting issue. Our framework demonstrates strong performance with state-of-the-art performance on various TAP datasets with faster inference speed.
In this paper, we propose a generic approach to perform global sensitivity analysis (GSA) for compartmental models based on continuous-time Markov chains (CTMC). This approach enables a complete GSA for epidemic models, in which not only the effects of uncertain parameters such as epidemic parameters (transmission rate, mean sojourn duration in compartments) are quantified, but also those of intrinsic randomness and interactions between the two. The main step in our approach is to build a deterministic representation of the underlying continuous-time Markov chain by controlling the latent variables modeling intrinsic randomness. Then, model output can be written as a deterministic function of both uncertain parameters and controlled latent variables, so that it becomespossible to compute standard variance-based sensitivity indices, e.g. the so-called Sobol' indices. However, different simulation algorithms lead to different representations. We exhibit in this work three different representations for CTMC stochastic compartmental models and discuss the results obtained by implementing and comparing GSAs based on each of these representations on a SARS-CoV-2 epidemic model.
In this paper, we combine the multiscale flnite element method to propose an algorithm for solving the non-stationary Stokes-Darcy model, where the permeability coefflcient in the Darcy region exhibits multiscale characteristics. Our algorithm involves two steps: first, conducting the parallel computation of multiscale basis functions in the Darcy region. Second, based on these multiscale basis functions, we employ an implicitexplicit scheme to solve the Stokes-Darcy equations. One signiflcant feature of the algorithm is that it solves problems on relatively coarse grids, thus signiflcantly reducing computational costs. Moreover, under the same coarse grid size, it exhibits higher accuracy compared to standard flnite element method. Under the assumption that the permeability coefflcient is periodic and independent of time, this paper demonstrates the stability and convergence of the algorithm. Finally, the rationality and effectiveness of the algorithm are verifled through three numerical experiments, with experimental results consistent with theoretical analysis.
Traffic Weaver is a Python package developed to generate a semi-synthetic signal (time series) with finer granularity, based on averaged time series, in a manner that, upon averaging, closely matches the original signal provided. The key components utilized to recreate the signal encompass oversampling with a given strategy, stretching to match the integral of the original time series, smoothing, repeating, applying trend, and adding noise. The primary motivation behind Traffic Weaver is to furnish semi-synthetic time-varying traffic in telecommunication networks, facilitating the development and validation of traffic prediction models, as well as aiding in the deployment of network optimization algorithms tailored for time-varying traffic.
Artificial General Intelligence falls short when communicating role specific nuances to other systems. This is more pronounced when building autonomous LLM agents capable and designed to communicate with each other for real world problem solving. Humans can communicate context and domain specific nuances along with knowledge, and that has led to refinement of skills. In this work we propose and evaluate a novel method that leads to knowledge distillation among LLM agents leading to realtime human role play preserving unique contexts without relying on any stored data or pretraining. We also evaluate how our system performs better in simulated real world tasks compared to state of the art.
In this thesis, we study problems at the interface of analysis and discrete mathematics. We discuss analogues of well known Hardy-type inequalities and Rearrangement inequalities on the lattice graphs $\mathbb{Z}^d$, with a particular focus on behaviour of sharp constants and optimizers.In the first half of the thesis, we analyse Hardy inequalities on $\mathbb{Z}^d$, first for $d=1$ and then for $d \geq 3$. We prove a sharp weighted Hardy inequality on integers with power weights of the form $n^\alpha$. This is done via two different methods, namely super-solution and Fourier method. We also use Fourier method to prove a weighted Hardy type inequality for higher order operators. After discussing the one dimensional case, we study the Hardy inequality in higher dimensions ($d \geq 3$). In particular, we compute the asymptotic behaviour of the sharp constant in the discrete Hardy inequality, as $d \rightarrow \infty$. This is done by converting the inequality into a continuous Hardy-type inequality on a torus for functions having zero average. These continuous inequalities are new and interesting in themselves. In the second half, we focus our attention on analogues of Rearrangement inequalities on lattice graphs. We begin by analysing the situation in dimension one. We define various notions of rearrangements and prove the corresponding Polya-Szeg\H{o} inequality. These inequalities are also applied to prove some weighted Hardy inequalities on integers. Finally, we study Rearrangement inequalities (Polya-Szeg\H{o}) on general graphs, with a particular focus on lattice graphs $\mathbb{Z}^d$, for $d \geq 2$. We develop a framework to study these inequalities, using which we derive concrete results in dimension two. In particular, these results develop connections between Polya-Szeg\H{o} inequality and various isoperimetric inequalities on graphs.
The aim of this paper is to discuss an estimation and a simulation method in the \textsf{R} package YUIMA for a linear regression model driven by a Student-$t$ L\'evy process with constant scale and arbitrary degrees of freedom. This process finds applications in several fields, for example finance, physic, biology, etc. The model presents two main issues. The first is related to the simulation of a sample path at high-frequency level. Indeed, only the $t$-L\'evy increments defined on an unitary time interval are Student-$t$ distributed. In YUIMA, we solve this problem by means of the inverse Fourier transform for simulating the increments of a Student-$t$ L\'{e}vy defined on a interval with any length. A second problem is due to the fact that joint estimation of trend, scale, and degrees of freedom does not seem to have been investigated as yet. In YUIMA, we develop a two-step estimation procedure that efficiently deals with this issue. Numerical examples are given in order to explain methods and classes used in the YUIMA package.
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax