Gibbs state reparation, or Gibbs sampling, is a key computational technique extensively used in physics, statistics, and other scientific fields. Recent efforts for designing fast mixing Gibbs samplers for quantum Hamiltonians have largely focused on commuting local Hamiltonians (CLHs), a non-trivial subclass of Hamiltonians which include highly entangled systems such as the Toric code and quantum double model. Most previous Gibbs samplers relied on simulating the Davies generator, which is a Lindbladian associated with the thermalization process in nature. Instead of using the Davies generator, we design a different Gibbs sampler for various CLHs by giving a reduction to classical Hamiltonians, in the sense that one can efficiently prepare the Gibbs state for some CLH $H$ on a quantum computer as long as one can efficiently do classical Gibbs sampling for the corresponding classical Hamiltonian $H^{(c)}$. We demonstrate that our Gibbs sampler is able to replicate state-of-the-art results as well as prepare the Gibbs state in regimes which were previously unknown, such as the low temperature region, as long as there exists fast mixing Gibbs samplers for the corresponding classical Hamiltonians. Our reductions are as follows. - If $H$ is a 2-local qudit CLH, then $H^{(c)}$ is a 2-local qudit classical Hamiltonian. - If $H$ is a 4-local qubit CLH on 2D lattice and there are no classical qubits, then $H^{(c)}$ is a 2-local qudit classical Hamiltonian on a planar graph. As an example, our algorithm can prepare the Gibbs state for the (defected) Toric code at any non-zero temperature in $\mathcal O(n^2)$ time. - If $H$ is a 4-local qubit CLH on 2D lattice and there are classical qubits, assuming that quantum terms are uniformly correctable, then $H^{(c)}$ is a constant-local classical Hamiltonian.
We aim to apply a quantum computing technique to compose artworks. The main idea is to revisit three paintings of different styles and historical periods: ''Narciso'', painted circa 1597-1599 by Michelangelo Merisi (Caravaggio), ''Les fils de l'homme'', painted in 1964 by Rene Magritte and ''192 Farben'', painted in 1966 by Gerard Richter. We utilize the output of a quantum computation to change the composition in the paintings, leading to a paintings series titled ''Quantum Transformation I, II, III''. In particular, the figures are discretized into square lattices and the order of the pieces is changed according to the result of the quantum simulation. We consider an Ising Hamiltonian as the observable in the quantum computation and its time evolution as the final outcome. From a classical subject to abstract forms, we seek to combine classical and quantum aesthetics through these three art pieces. Besides experimenting with hardware runs and circuit noise, our goal is to reproduce these works as physical oil paintings on wooden panels. With this process, we complete a full circle between classical and quantum techniques and contribute to rethinking Art practice in the era of quantum computing technologies.
Gaussian process are a widely-used statistical tool for conducting non-parametric inference in applied sciences, with many computational packages available to fit to data and predict future observations. We study the use of the Greta software for Bayesian inference to apply Gaussian process regression to spatio-temporal data of infectious disease outbreaks and predict future disease spread. Greta builds on Tensorflow, making it comparatively easy to take advantage of the significant gain in speed offered by GPUs. In these complex spatio-temporal models, we show a reduction of up to 70\% in computational time relative to fitting the same models on CPUs. We show how the choice of covariance kernel impacts the ability to infer spread and extrapolate to unobserved spatial and temporal units. The inference pipeline is applied to weekly incidence data on tuberculosis in the East and West Midlands regions of England over a period of two years.
Splitting methods are widely used for solving initial value problems (IVPs) due to their ability to simplify complicated evolutions into more manageable subproblems which can be solved efficiently and accurately. Traditionally, these methods are derived using analytic and algebraic techniques from numerical analysis, including truncated Taylor series and their Lie algebraic analogue, the Baker--Campbell--Hausdorff formula. These tools enable the development of high-order numerical methods that provide exceptional accuracy for small timesteps. Moreover, these methods often (nearly) conserve important physical invariants, such as mass, unitarity, and energy. However, in many practical applications the computational resources are limited. Thus, it is crucial to identify methods that achieve the best accuracy within a fixed computational budget, which might require taking relatively large timesteps. In this regime, high-order methods derived with traditional methods often exhibit large errors since they are only designed to be asymptotically optimal. Machine Learning techniques offer a potential solution since they can be trained to efficiently solve a given IVP with less computational resources. However, they are often purely data-driven, come with limited convergence guarantees in the small-timestep regime and do not necessarily conserve physical invariants. In this work, we propose a framework for finding machine learned splitting methods that are computationally efficient for large timesteps and have provable convergence and conservation guarantees in the small-timestep limit. We demonstrate numerically that the learned methods, which by construction converge quadratically in the timestep size, can be significantly more efficient than established methods for the Schr\"{o}dinger equation if the computational budget is limited.
Despite significant effort, the quantum machine learning community has only demonstrated quantum learning advantages for artificial cryptography-inspired datasets when dealing with classical data. In this paper we address the challenge of finding learning problems where quantum learning algorithms can achieve a provable exponential speedup over classical learning algorithms. We reflect on computational learning theory concepts related to this question and discuss how subtle differences in definitions can result in significantly different requirements and tasks for the learner to meet and solve. We examine existing learning problems with provable quantum speedups and find that they largely rely on the classical hardness of evaluating the function that generates the data, rather than identifying it. To address this, we present two new learning separations where the classical difficulty primarily lies in identifying the function generating the data. Furthermore, we explore computational hardness assumptions that can be leveraged to prove quantum speedups in scenarios where data is quantum-generated, which implies likely quantum advantages in a plethora of more natural settings (e.g., in condensed matter and high energy physics). We also discuss the limitations of the classical shadow paradigm in the context of learning separations, and how physically-motivated settings such as characterizing phases of matter and Hamiltonian learning fit in the computational learning framework.
The functional interpretation of language-related ERP components has been a central debate in psycholinguistics for decades. We advance an information-theoretic model of human language processing in the brain in which incoming linguistic input is processed at first shallowly and later with more depth, with these two kinds of information processing corresponding to distinct electroencephalographic signatures. Formally, we show that the information content (surprisal) of a word in context can be decomposed into two quantities: (A) shallow surprisal, which signals shallow processing difficulty for a word, and corresponds with the N400 signal; and (B) deep surprisal, which reflects the discrepancy between shallow and deep representations, and corresponds to the P600 signal and other late positivities. Both of these quantities can be estimated straightforwardly using modern NLP models. We validate our theory by successfully simulating ERP patterns elicited by a variety of linguistic manipulations in previously-reported experimental data from six experiments, with successful novel qualitative and quantitative predictions. Our theory is compatible with traditional cognitive theories assuming a `good-enough' shallow representation stage, but with a precise information-theoretic formulation. The model provides an information-theoretic model of ERP components grounded on cognitive processes, and brings us closer to a fully-specified neuro-computational model of language processing.
With the rapid advancements in medical data acquisition and production, increasingly richer representations exist to characterize medical information. However, such large-scale data do not usually meet computing resource constraints or algorithmic complexity, and can only be processed after compression or reduction, at the potential loss of information. In this work, we consider specific Gaussian mixture models (HD-GMM), tailored to deal with high dimensional data and to limit information loss by providing component-specific lower dimensional representations. We also design an incremental algorithm to compute such representations for large data sets, overcoming hardware limitations of standard methods. Our procedure is illustrated in a magnetic resonance fingerprinting study, where it achieves a 97% dictionary compression for faster and more accurate map reconstructions.
The Markov chain Monte Carlo (MCMC) method is widely used in various fields as a powerful numerical integration technique for systems with many degrees of freedom. In MCMC methods, probabilistic state transitions can be considered as a random walk in state space, and random walks allow for sampling from complex distributions. However, paradoxically, it is necessary to carefully suppress the randomness of the random walk to improve computational efficiency. By breaking detailed balance, we can create a probability flow in the state space and perform more efficient sampling along this flow. Motivated by this idea, practical and efficient nonreversible MCMC methods have been developed over the past ten years. In particular, the lifting technique, which introduces probability flows in an extended state space, has been applied to various systems and has proven more efficient than conventional reversible updates. We review and discuss several practical approaches to implementing nonreversible MCMC methods, including the shift method in the cumulative distribution and the directed-worm algorithm.
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.