亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate a linearised Calder\'on problem in a two-dimensional bounded simply connected $C^{1,\alpha}$ domain $\Omega$. After extending the linearised problem for $L^2(\Omega)$ perturbations, we orthogonally decompose $L^2(\Omega) = \oplus_{k=0}^\infty \mathcal{H}_k$ and prove Lipschitz stability on each of the infinite-dimensional $\mathcal{H}_k$ subspaces. In particular, $\mathcal{H}_0$ is the space of square-integrable harmonic perturbations. This appears to be the first Lipschitz stability result for infinite-dimensional spaces of perturbations in the context of the (linearised) Calder\'on problem. Previous optimal estimates with respect to the operator norm of the data map have been of the logarithmic-type in infinite-dimensional settings. The remarkable improvement is enabled by using the Hilbert-Schmidt norm for the Neumann-to-Dirichlet boundary map and its Fr\'echet derivative with respect to the conductivity coefficient. We also derive a direct reconstruction method that inductively yields the orthogonal projections of a general $L^2(\Omega)$ perturbation onto the $\mathcal{H}_k$ spaces, hence reconstructing any $L^2(\Omega)$ perturbation.

相關內容

We construct neural network regression models to predict key metrics of complexity for Gr\"obner bases of binomial ideals. This work illustrates why predictions with neural networks from Gr\"obner computations are not a straightforward process. Using two probabilistic models for random binomial ideals, we generate and make available a large data set that is able to capture sufficient variability in Gr\"obner complexity. We use this data to train neural networks and predict the cardinality of a reduced Gr\"obner basis and the maximum total degree of its elements. While the cardinality prediction problem is unlike classical problems tackled by machine learning, our simulations show that neural networks, providing performance statistics such as $r^2 = 0.401$, outperform naive guess or multiple regression models with $r^2 = 0.180$.

We analyze the conforming approximation of the time-harmonic Maxwell's equations using N\'ed\'elec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.

We identify a family of $O(|E(G)|^2)$ nontrivial facets of the connected matching polytope of a graph $G$, that is, the convex hull of incidence vectors of matchings in $G$ whose covered vertices induce a connected subgraph. Accompanying software to further inspect the polytope of an input graph is available.

Let $(M,g)$ be a Riemannian manifold. If $\mu$ is a probability measure on $M$ given by a continuous density function, one would expect the Fr\'{e}chet means of data-samples $Q=(q_1,q_2,\dots, q_N)\in M^N$, with respect to $\mu$, to behave ``generically''; e.g. the probability that the Fr\'{e}chet mean set $\mbox{FM}(Q)$ has any elements that lie in a given, positive-codimension submanifold, should be zero for any $N\geq 1$. Even this simplest instance of genericity does not seem to have been proven in the literature, except in special cases. The main result of this paper is a general, and stronger, genericity property: given i.i.d. absolutely continuous $M$-valued random variables $X_1,\dots, X_N$, and a subset $A\subset M$ of volume-measure zero, $\mbox{Pr}\left\{\mbox{FM}(\{X_1,\dots,X_N\})\subset M\backslash A\right\}=1.$ We also establish a companion theorem for equivariant Fr\'{e}chet means, defined when $(M,g)$ arises as the quotient of a Riemannian manifold $(\widetilde{M},\tilde{g})$ by a free, isometric action of a finite group. The equivariant Fr\'{e}chet means lie in $\widetilde{M}$, but, as we show, project down to the ordinary Fr\'{e}chet sample means, and enjoy a similar genericity property. Both these theorems are proven as consequences of a purely geometric (and quite general) result that constitutes the core mathematics in this paper: If $A\subset M$ has volume zero in $M$ , then the set $\{Q\in M^N : \mbox{FM}(Q) \cap A\neq\emptyset\}$ has volume zero in $M^N$. We conclude the paper with an application to partial scaling-rotation means, a type of mean for symmetric positive-definite matrices.

We present here a new splitting method to solve Lyapunov equations of the type $AP + PA^T=-BB^T$ in a Kronecker product form. Although that resulting matrix is of order $n^2$, each iteration of the method demands only two operations with the matrix $A$: a multiplication of the form $(A-\sigma I) \hat{B}$ and a inversion of the form $(A-\sigma I)^{-1}\hat{B}$. We see that for some choice of a parameter the iteration matrix is such that all their eigenvalues are in absolute value less than 1, which means that it should converge without depending on the starting vector. Nevertheless we present a theorem that enables us how to get a good starting vector for the method.

This study investigates the interconnections between the traditional Fokker-Planck Equation (FPE) and its fractal counterpart (FFPE), utilizing fractal derivatives. By examining the continuous approximation of fractal derivatives in the FPE, it derives the Plastino-Plastino Equation (PPE), which is commonly associated with Tsallis Statistics. This work deduces the connections between the entropic index and the geometric quantities related to the fractal dimension. Furthermore, it analyzes the implications of these relationships on the dynamics of systems in fractal spaces. In order to assess the effectiveness of both equations, numerical solutions are compared within the context of complex systems dynamics, specifically examining the behaviours of quark-gluon plasma (QGP). The FFPE provides an appropriate description of the dynamics of fractal systems by accounting for the fractal nature of the momentum space, exhibiting distinct behaviours compared to the traditional FPE due to the system's fractal nature. The findings indicate that the fractal equation and its continuous approximation yield similar results in studying dynamics, thereby allowing for interchangeability based on the specific problem at hand.

This paper studies the extreme singular values of non-harmonic Fourier matrices. Such a matrix of size $m\times s$ can be written as $\Phi=[ e^{-2\pi i j x_k}]_{j=0,1,\dots,m-1, k=1,2,\dots,s}$ for some set $\mathcal{X}=\{x_k\}_{k=1}^s$. The main results provide explicit lower bounds for the smallest singular value of $\Phi$ under the assumption $m\geq 6s$ and without any restrictions on $\mathcal{X}$. They show that for an appropriate scale $\tau$ determined by a density criteria, interactions between elements in $\mathcal{X}$ at scales smaller than $\tau$ are most significant and depends on the multiscale structure of $\mathcal{X}$ at fine scales, while distances larger than $\tau$ are less important and only depend on the local sparsity of the far away points. Theoretical and numerical comparisons show that the main results significantly improve upon classical bounds and achieve the same rate that was previously discovered for more restrictive settings.

We propose an original approach to investigate the linearity of Gray codes obtained from $\mathbb{Z}_{2^L}$-additive codes by introducing two related binary codes: the associated and concatenated. Once they are defined, one could perform a straightforward analysis of the Schur product between their codewords and determine the linearity of the respective Gray code. This work expands on earlier contributions from the literature, where the linearity was established with respect to the kernel of a code and/or operations on $\mathbb{Z}_{2^L}$. The $\mathbb{Z}_{2^L}$-additive codes we apply the Gray map and check the linearity are the well-known Hadamard, simplex, MacDonald, Kerdock, and Preparata codes. We also present a family of Reed-Muller codes that yield to linear Gray codes and perform a computational verification of our proposed method applied to other $\mathbb{Z}_{2^L}$-additive codes.

We show that under minimal assumptions on a random vector $X\in\mathbb{R}^d$ and with high probability, given $m$ independent copies of $X$, the coordinate distribution of each vector $(\langle X_i,\theta \rangle)_{i=1}^m$ is dictated by the distribution of the true marginal $\langle X,\theta \rangle$. Specifically, we show that with high probability, \[\sup_{\theta \in S^{d-1}} \left( \frac{1}{m}\sum_{i=1}^m \left|\langle X_i,\theta \rangle^\sharp - \lambda^\theta_i \right|^2 \right)^{1/2} \leq c \left( \frac{d}{m} \right)^{1/4},\] where $\lambda^{\theta}_i = m\int_{(\frac{i-1}{m}, \frac{i}{m}]} F_{ \langle X,\theta \rangle }^{-1}(u)\,du$ and $a^\sharp$ denotes the monotone non-decreasing rearrangement of $a$. Moreover, this estimate is optimal. The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of $X$ and its empirical counterpart, $\frac{1}{m} \sum_{i=1}^m \delta_{\langle X_i, \theta \rangle}$.

We propose a parallel (distributed) version of the spectral proper orthogonal decomposition (SPOD) technique. The parallel SPOD algorithm distributes the spatial dimension of the dataset preserving time. This approach is adopted to preserve the non-distributed fast Fourier transform of the data in time, thereby avoiding the associated bottlenecks. The parallel SPOD algorithm is implemented in the PySPOD (//github.com/MathEXLab/PySPOD) library and makes use of the standard message passing interface (MPI) library, implemented in Python via mpi4py (//mpi4py.readthedocs.io/en/stable/). An extensive performance evaluation of the parallel package is provided, including strong and weak scalability analyses. The open-source library allows the analysis of large datasets of interest across the scientific community. Here, we present applications in fluid dynamics and geophysics, that are extremely difficult (if not impossible) to achieve without a parallel algorithm. This work opens the path toward modal analyses of big quasi-stationary data, helping to uncover new unexplored spatio-temporal patterns.

北京阿比特科技有限公司